3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography.

Nat Commun

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

Published: August 2022

The orderly arrangement of nanomaterials' tiny units at the nanometer-scale accounts for a substantial part of their remarkable properties. Maintaining this orderness and meanwhile endowing the nanomaterials with highly precise and free-designed 3D micro architectures will open an exciting prospect for various novel applications. In this paper, we developed a sacrificial-scaffold-mediated two-photon lithography (TPL) strategy that enables the fabrication of complex 3D colloidal crystal microstructures with orderly-arranged nanoparticles inside. We show that, with the help of a degradable hydrogel scaffold, the disturbance effect of the femtosecond laser to the nanoparticle self-assembling could be overcome. Therefore, hydrogel-state and solid-state colloidal crystal microstructures with diverse compositions, free-designed geometries and variable structural colors could be easily fabricated. This enables the possibility to create novel colloidal crystal microsensing systems that have not been achieved before.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355982PMC
http://dx.doi.org/10.1038/s41467-022-32317-wDOI Listing

Publication Analysis

Top Keywords

colloidal crystal
16
crystal microstructures
12
sacrificial-scaffold-mediated two-photon
8
two-photon lithography
8
printing colloidal
4
crystal
4
microstructures sacrificial-scaffold-mediated
4
lithography orderly
4
orderly arrangement
4
arrangement nanomaterials'
4

Similar Publications

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

The morphology and kinetics of the crystal growth front have been poorly explored at the particle level. Here, we experimentally observe the crystal growth front in liquid with single-particle kinetics using colloid systems and reveal a surface layer of polymorphic crystal near the solid-solid transition when the two crystals form a low-energy coherent interface. The thickness of the surface crystal can exceed 50 particles and grows logarithmically with the temperature as approaching the solid-solid transition which follows premelting theory.

View Article and Find Full Text PDF

Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems.

View Article and Find Full Text PDF

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!