The prenylation of compounds has attracted much attention, since it often adds bioactivity to non-prenylated compounds. We employed an enzyme assay with CdpNPT, an indole prenyltransferase from Aspergillus fumigatus with two naturally occurring β-carbolines, harmine (3) and harman (4) as prenyl acceptors, in the presence of dimethylallyl diphosphate (DMAPP) as the prenyl donor. The enzyme accepted these two prenyl acceptor substrates to produce 6-(3',3'-dimethylallyl)harmine (5) from 3 and 9-(3',3'-dimethylallyl)harman (6) and 6-(3',3'-dimethylallyl)harman (7) from 4. The X-ray crystal structure analysis of the CdpNPT (38-440) truncated mutant complexed with 4, and docking simulation studies of DMAPP to the crystal structure of the CdpNPT (38-440) mutant, suggested that CdpNPT could employ the two-step prenylation mechanism to produce 7, while the enzyme produced 6 with either one- or two-step prenylation mechanisms. Furthermore, the antibacterial assays revealed that the 3',3'-dimethylallylation of 3 and 4, as well as harmol (1), at C-6 enhanced the activities against Staphylococcus aureus and Bacillus subtilis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2022.07.004 | DOI Listing |
The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates.
View Article and Find Full Text PDFJ Nat Prod
September 2024
Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
Fungal aromatic prenyltransferases are a family of biosynthetic enzymes that catalyze the prenylation of a range of aromatic substrates during the biosynthesis of bioactive indole alkaloids, diketopiperazines, and meroterpenoids. Their broad substrate scope and soluble nature make these enzymes particularly adept for applications in biocatalysis; for example, the enzymatic derivatization of aromatic drugs improves their bioactivity. Here, we investigated four putative aromatic prenyltransferases from lichen-forming fungi, an underexplored group of organisms that produce more than 1,000 unique metabolites.
View Article and Find Full Text PDFACS Chem Biol
June 2024
Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark.
Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from P8-A2 in J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data.
View Article and Find Full Text PDFOrg Lett
April 2024
School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
J Agric Food Chem
April 2024
School of Pharmaceutical Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China.
Phloretin is widely found in fruit and shows various biological activities. Here, we demonstrate the dimethylallylation, geranylation, and farnesylation, particularly the first dimethylallylation at the nonaromatic carbon of phloretin () by the fungal prenyltransferase AnaPT and its mutants. F265 was identified as a key amino acid residue related to dimethylallylation at the nonaromatic carbon of phloretin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!