Aims: Colon cancer (CC) is a prevalent malignancy worldwide and is one of the most easily altered cancers by dietary regulation. Petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) (Pt3R5G) isolated and purified from Lycium ruthenicum Murray, which exhibits highly efficient antioxidant activity and specific anticancer effects, is the flavonoids compound. We aimed to study the effect of Pt3R5G on CC cells and elucidate the potential underlying mechanisms.
Main Methods: Cell proliferation was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and colony formation assays. Cell cycle, cell apoptosis and reactive oxygen species (ROS) analysis were performed by flow cytometry. RNA-sequencing was performed to elucidate the potential underlying mechanisms. The lipid peroxidation level of cells was detected by malondialdehyde (MDA) assay. The mitochondrial morphology of cells was inspected using a transmission electron microscope. Additionally, we overexpressed SLC7A11 to perform rescue experiments. In vivo, xenograft mice assay was performed to verify the effect of Pt3R5G on the growth of colon cancer.
Key Findings: Pt3R5G reduced the cell activity by blocking the cell cycle in G0/G1 phase, inducing the apoptosis and ferroptosis in RKO cells. The overexpressed of SLC7A11, a significantly down-regulated expression gene caused by Pt3R5G, rescued the cell proliferation inhibition and ferroptosis process. Furthermore, Pt3R5G inhibited tumor growth in nude mice. Our study suggests that Pt3R5G inhibits RKO cell proliferation through mainly reducing ferroptosis by down-regulated SLC7A11.
Significance: As a potential therapeutic drug, Pt3R5G showed efficient anticancer activity through a variety of pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2022.120859 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFBackground And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA.
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!