PEX5 translocation into and out of peroxisomes drives matrix protein import.

Mol Cell

Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. Electronic address:

Published: September 2022

Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal enzymes are imported from the cytosol by the receptor PEX5, which interacts with a docking complex in the peroxisomal membrane and then returns to the cytosol after monoubiquitination by a membrane-embedded ubiquitin ligase. The mechanism by which PEX5 shuttles between cytosol and peroxisomes and releases cargo inside the lumen is unclear. Here, we use Xenopus egg extract to demonstrate that PEX5 accompanies cargo completely into the lumen, utilizing WxxxF/Y motifs near its N terminus that bind a lumenal domain of the docking complex. PEX5 recycling is initiated by an amphipathic helix that binds to the lumenal side of the ubiquitin ligase. The N terminus then emerges in the cytosol for monoubiquitination. Finally, PEX5 is extracted from the lumen, resulting in the unfolding of the receptor and cargo release. Our results reveal the unique mechanism by which PEX5 ferries proteins into peroxisomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444985PMC
http://dx.doi.org/10.1016/j.molcel.2022.07.004DOI Listing

Publication Analysis

Top Keywords

docking complex
8
cytosol monoubiquitination
8
ubiquitin ligase
8
mechanism pex5
8
pex5
7
pex5 translocation
4
peroxisomes
4
translocation peroxisomes
4
peroxisomes drives
4
drives matrix
4

Similar Publications

Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection.

Viruses

December 2024

Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.

View Article and Find Full Text PDF

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

New tributyltin(IV) complexes containing the carboxylate ligands 3-(4-methyl-2-oxoquinolin-1(2H)-yl)propanoic acid () and 2-(4-methyl-2-oxoquinolin-1(2H)-yl)acetic acid () have been synthesized. Their structures have been determined by elemental microanalysis, FT-IR and multinuclear NMR (H, C and Sn) spectroscopy and X-ray diffraction study. A solution state NMR analysis reveals a four-coordinated tributyltin(IV) complex in non-polar solvents, while an X-Ray crystallographic analysis confirms a five-coordinated trigonal-bipyramidal geometry around the tin atom due to the formation of 1D chains.

View Article and Find Full Text PDF

Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex.

View Article and Find Full Text PDF

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!