Hyaluronate-Black Phosphorus-Upconversion Nanoparticle Complex for Non-invasive Theranosis of Skin Cancer.

Biomacromolecules

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Gyeongbuk, Korea.

Published: September 2022

Despite the wide investigation on black phosphorus (BP) for biophotonic applications, the finite depth of light penetration has limited further development of BP-based photomedicines. Here, we developed a hyaluronate-BP-upconversion nanoparticle (HA-BP-UCNP) complex for near-infrared (NIR) light-mediated multimodal theranosis of skin cancer with photoacoustic (PA) bioimaging, photodynamic therapy (PDT), and photothermal therapy (PTT). In contrast to the conventional BP-based skin cancer theranosis, the HA-BP-UCNP complex could be non-invasively delivered into the tumor tissue to induce the cancer cell apoptosis upon NIR light irradiation. The PA imaging of BP successfully visualized the non-invasive transdermal delivery of the HA-BP-UCNP complex into the mice skin. HA in the complex facilitated the transdermal delivery of BP into the tumor tissue under the skin. Upon 980 nm NIR light irradiation, the UCNP converted the light to UV-blue light to generate reactive oxygen species by sensitizing BP in the HA-BP-UCNP complex for PDT. Remarkably, 808 nm NIR irradiation with PTT triggered the apoptosis of tumor cells. Taken together, we could confirm the feasibility of the HA-BP-UCNP complex for NIR light-mediated multimodal theranosis of skin cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.2c00506DOI Listing

Publication Analysis

Top Keywords

ha-bp-ucnp complex
20
theranosis skin
12
skin cancer
12
nir light-mediated
8
light-mediated multimodal
8
multimodal theranosis
8
tumor tissue
8
nir light
8
light irradiation
8
transdermal delivery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!