A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robot Policy Improvement With Natural Evolution Strategies for Stable Nonlinear Dynamical System. | LitMetric

Robot learning through kinesthetic teaching is a promising way of cloning human behaviors, but it has its limits in the performance of complex tasks with small amounts of data, due to compounding errors. In order to improve the robustness and adaptability of imitation learning, a hierarchical learning strategy is proposed: low-level learning comprises only behavioral cloning with supervised learning, and high-level learning constitutes policy improvement. First, the Gaussian mixture model (GMM)-based dynamical system is formulated to encode a motion from the demonstration. We then derive the sufficient conditions of the GMM parameters that guarantee the global stability of the dynamical system from any initial state, using the Lyapunov stability theorem. Generally, imitation learning should reason about the motion well into the future for a wide range of tasks; it is significant to improve the adaptability of the learning method by policy improvement. Finally, a method based on exponential natural evolution strategies is proposed to optimize the parameters of the dynamical system associated with the stiffness of variable impedance control, in which the exploration noise is subject to stability conditions of the dynamical system in the exploration space, thus guaranteeing the global stability. Empirical evaluations are conducted on manipulators for different scenarios, including motion planning with obstacle avoidance and stiffness learning.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3192049DOI Listing

Publication Analysis

Top Keywords

dynamical system
20
policy improvement
12
learning
9
natural evolution
8
evolution strategies
8
imitation learning
8
global stability
8
dynamical
5
system
5
robot policy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!