The orthosteric ATP-binding site of the P2X receptors is poorly understood. Only a few compounds were well characterized for their P2X receptor functional activity and subtype selectivity. This study represents the first fully functional characterization of various ATP derivatives combined with in silico studies to advance the understanding of SARs at the orthosteric binding sites of P2X receptors leading to the identification of 2-chloro-3-trifluoromethylbenzoyl ATP ester as a novel pan-P2X receptor agonist and several subtype-selective P2X receptor agonists. Furthermore, esterification of both hydroxyl functions of ATP using 1-naphthoic acid has led to compound acting as an antagonist at P2X1-4 and P2X2/3 receptors and an agonist at P2X7 receptors. This particular ATP derivative will allow interrogating the P2X7 receptor function while antagonizing all other P2X receptor subtypes and therefore serve as a valuable pharmacological tool in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c00812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!