Precious metals (Pt, Ir, Ru, and so on) and related compounds usually demonstrate superb catalytic activity for electrochemical hydrogen production. However, scarcity and stability are still challenges for hydrogen evolution reaction, even for single-atomic-site electrocatalysts. Herein, a fluorine (F) doping strategy is proposed to enhance the strong metal-support interaction between the F-doped NiN support and the loaded ruthenium (Ru) species. Via synergistically modulating both the Ru loading amount and F doping concentration, outstanding HER activity was achieved in Ru@F-NiN with an overpotential (η) of 115 mV at 100 mA cm, superior to the benchmark Pt/C (η = 201 mV). Density functional theory simulation in combination with X-ray photoelectron spectra and X-ray absorption spectroscopy characterizations convincingly demonstrate that, with the strongest electronegativity, F doping could effectively stabilize Ru atoms doped in the F-NiN substrate and simultaneously reduce the H bonding strength, which accelerated the desorption of H. These findings provide a facile strategy to modulate both catalytic activities and stabilities of heteroatom-loaded catalytic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c09507DOI Listing

Publication Analysis

Top Keywords

strong metal-support
8
metal-support interaction
8
hydrogen evolution
8
electronegativity enhanced
4
enhanced strong
4
interaction ru@f-nin
4
ru@f-nin enhanced
4
enhanced alkaline
4
alkaline hydrogen
4
evolution precious
4

Similar Publications

Electrocatalytic gas-evolving reactions often result in bubble-covered surfaces, impeding the mass transfer to active sites. Such an issue will be worsened in practical high-current-density conditions and can cause sudden cell failure. Herein, we develop an on-chip microcell-based total-internal-reflection-fluorescence-microscopy to enable operando imaging of bubbles at sub-50 nm and dynamic probing of their nucleation during hydrogen evolution reaction.

View Article and Find Full Text PDF

The hydrogenation of bicarbonate, a byproduct of CO captured in alkaline solutions, into formic acid (FA) using glycerol (GLY) as a hydrogen source offers a promising carbon-negative strategy for reducing CO emissions. While Pd-based catalysts are effective in this reaction, they often require high temperatures, leading to low FA yield due to strong hydrogen adsorption on Pd surfaces. In this work, metal-organic framework derived N-doped carbon encapsulated CoNi alloy nanoparticles (CoNi@NC) were prepared, acid-leached, and employed as a support to modulate the electronic structure of Pd-based catalysts.

View Article and Find Full Text PDF

Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.

View Article and Find Full Text PDF

Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.

View Article and Find Full Text PDF

Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!