Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases.

ACS Appl Mater Interfaces

Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States.

Published: January 2023

Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c07981DOI Listing

Publication Analysis

Top Keywords

cns diseases
16
extracellular vesicles
8
diagnosis therapy
8
therapy central
8
central nervous
8
nervous system
8
diseases will
8
diseases
5
nanotechnology-inspired extracellular
4
vesicles theranostics
4

Similar Publications

Omaha System-Based Extended Nursing Care in Hypertensive Cerebral Hemorrhage: A Randomized Study.

J Trauma Nurs

January 2025

Author Affiliations: Department of Neurosurgery (Dr Xiao), Department of Nursing Care, Affiliated Hospital of Chengdu University, Chengdu, China (Dr Wang).

Background: Traditional nursing care often fails to meet the complex needs of hypertensive cerebral hemorrhage patients. Limited evidence exists on the efficacy of structured nursing frameworks such as the Omaha System in postoperative care for these patients.

Objective: This study aims to evaluate the efficacy of Omaha-based extended nursing care in improving patients' outcomes.

View Article and Find Full Text PDF

Background And Objectives: The most effective antiseizure medications (ASMs) for poststroke seizures (PSSs) remain unclear. We aimed to determine outcomes associated with ASMs in people with PSS.

Methods: We systematically searched electronic databases for studies on patients with PSS on ASMs.

View Article and Find Full Text PDF

Fluctuation-related pain (FRP) affects more than one third of people with Parkinson's disease (PwP, PD) and has a harmful effect on health-related quality of life (HRQoL), but often remains under-reported by patients and neglected by clinicians. The National Institute for Health and Care Excellence (NICE) recommends The Parkinson KinetiGraphTM (the PKGTM) for remote monitoring of motor symptoms. We investigated potential links between the PKGTM-obtained parameters and clinical rating scores for FRP in PwP in an exploratory, cross-sectional analysis of two prospective studies: "The Non-motor International Longitudinal, Real-Life Study in PD-NILS" and "An observational-based registry of baseline PKG™ in PD-PKGReg".

View Article and Find Full Text PDF

Introduction: Patients with cerebral hemorrhage often require a tracheal intubation to protect the airway and maintain oxygenation. Due to the use of analgesic and sedative drugs during endotracheal intubation and the opening of the glottis may easily cause aspiration pneumonia. Ceftriaxone is a semi-synthetic third-generation cephalosporin with strong antimicrobial activity against most gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!