A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling Interstitial Anionic Electron-Driven Ultrahigh K-Ion Storage Capacity in a Novel Two-Dimensional Electride Exemplified by ScSi. | LitMetric

Two-dimensional (2D) electrides, characterized by excess interstitial anionic electron (IAE) in a crystalline 2D material, offer promising opportunities for the development of electrode materials, in particular in rechargeable metal-ion batteries applications. Although a few such potential electride materials have been reported, they generally show low metal-ion storage capacity, and the effect of IAE on the ion storage performance remains elusive so far. Here we report a novel 2D electride, [ScSi]·1e, with fascinating IAE-driven high alkali metal-ion storage capacity. In particular, its K-ion specific capacity can reach up to 1497 mA h g, higher than any previously reported 2D materials-based anodes in K-ion batteries (PIBs). The IAE in the [ScSi]·1e crystal accounts for such high capacity behavior, which can drift away and balance the charge on the metal-cation, playing a crucial role in stabilizing the metal-ion adsorption and enhancing multilayer-ions adsorption. This proposed IAE-driven storage mechanism provides an unprecedented avenue for the future design of high storage capacity electrode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c01888DOI Listing

Publication Analysis

Top Keywords

storage capacity
16
interstitial anionic
8
electrode materials
8
metal-ion storage
8
storage
6
capacity
6
unveiling interstitial
4
anionic electron-driven
4
electron-driven ultrahigh
4
ultrahigh k-ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!