[Analysis of phenotype and MYH7 gene variant in a family of patients with hypertrophic cardiomyopathy].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

Hypertrophic Cardiomyopathy Center of Xijing Hospital of Air Force Medical University, Multi Disciplinary Consultation Center of Hypertrophic Cardiomyopathy of Shaanxi Province, Department of Ultrasonography, Xijing Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China.

Published: August 2022

Objective: To analyze the clinical phenotype and MYH7 gene variant in a Chinese pedigree affected with hypertrophic cardiomyopathy (HCM).

Methods: The proband was screened for variant of 96 cardiomyopathy-associated genes by exonic amplification and high-throughput sequencing. Candidate variant was verified by Sanger sequencing among 300 healthy controls as well as family members of the proband. Co-segregation analysis of genotypes and clinical phenotypes was carried out for the pedigree. Clustal X software was used to analyze the sequence conservation of the variant among various species, and its pathogenicity was predicted by using bioinformatics software.

Results: 6 out of 12 members from this pedigree were found to harbor heterozygous c.4124A>G (p.Tyr1375Cys) variant of the MYH7 gene, among whom five were diagnosed with HCM. The remaining one had failed to meet the diagnostic criteria for HCM, but had abnormal ECG. The same variant was not found in the 300 healthy controls. Amino acid sequence analysis showed that the variant is located in a highly conserved region, and bioinformatics analysis predicted that this variant may affect protein function and has a deleterious effect. Based on the American College of Medical Genetics and Genomics (ACMG) guidelines, the variant was predicted to be likely pathogenic (PM2+ PP1_Moderate+PP3+PP5).

Conclusion: The c.4124A>G (p.Tyr1375Cys) variant of the MYH7 gene probably underlay the pathogenesis in this pedigree. Above finding has important value for the early diagnosis of patients with HCM.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn511374-20210317-00239DOI Listing

Publication Analysis

Top Keywords

myh7 gene
16
variant
11
phenotype myh7
8
gene variant
8
300 healthy
8
healthy controls
8
c4124a>g ptyr1375cys
8
ptyr1375cys variant
8
variant myh7
8
[analysis phenotype
4

Similar Publications

Haplotyping-based preimplantation genetic testing for inherited cardiovascular disease: a multidisciplinary approach.

Mol Genet Genomics

December 2024

Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.

Given the high morbidity, mortality, and hereditary risk of cardiovascular diseases (CVDs), their prevention and control have garnered widespread attention and remain central to clinical research. This study aims to assess the feasibility and necessity of haplotyping-based preimplantation genetic testing for the prevention of inherited CVD. A total of 15 preimplantation genetic testing for monogenic defect (PGT-M) cycles were performed in 12 CVD families from January 2016 to July 2022.

View Article and Find Full Text PDF

Muscle atrophy, an age-related condition, presents a growing healthcare concern within the context of global population aging. While studies have investigated for its potential antifatigue properties, reports on its active components remain limited. This study evaluated the efficacy of mycelium extract on muscle health, utilizing a 1:1 water-ethanol preparation administered to C57BL/6 mice exhibiting acute hind leg atrophy.

View Article and Find Full Text PDF

Randomized clinical trials (RCTs) for hypertrophic cardiomyopathy (HCM) have long been challenging caused by the condition's rarity, low event rates, and diverse clinical presentations. However, recent advances in targeted therapies have sparked increased interest in HCM research. Despite this, designing effective RCTs remains complex, particularly in identifying clinically meaningful endpoints.

View Article and Find Full Text PDF

Three Novel Pathogenic Variants in Unrelated Vietnamese Patients with Cardiomyopathy.

Diagnostics (Basel)

November 2024

Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Cau Giay, Hanoi 100000, Vietnam.

: Cardiomyopathy, including dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), is a major cause of heart failure (HF) and a leading indication for heart transplantation. Of these patients, 20-50% have a genetic cause, so understanding the genetic basis of cardiomyopathy will provide knowledge about the pathogenesis of the disease for diagnosis, treatment, prevention, and genetic counseling for families. : This study collected nine patients from different Vietnamese families for genetic analysis at The Cardiovascular Center, E Hospital, Hanoi, Vietnam.

View Article and Find Full Text PDF

Dilated cardiomyopathy (DCM) is a progressive myocardial disorder characterized by impaired cardiac contraction and ventricular dilation. However, some patients with DCM improve when experiencing left ventricular reverse remodeling (LVRR). Currently, the detailed association between genotypes and clinical outcomes, including LVRR, particularly among children, remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!