Small molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is the cause of the COVID-19 pandemic. To expedite the discovery of lead compounds for development, assays have been developed based on affinity selection-mass spectrometry (AS-MS), which enables the rapid screening of mixtures such as combinatorial libraries and extracts of botanicals or other sources of natural products. AS-MS assays have been used to find ligands to the SARS-CoV-2 spike protein for inhibition of cell entry as well as to the 3-chymotrypsin-like cysteine protease (3CLpro) and the RNA-dependent RNA polymerase complex constituent Nsp9, which are targets for inhibition of viral replication. The AS-MS approach of magnetic microbead affinity selection screening has been used to discover high-affinity peptide ligands to the spike protein as well as the hemp cannabinoids cannabidiolic acid and cannabigerolic acid, which can prevent cell infection by SARS-CoV-2. Another AS-MS method, native mass spectrometry, has been used to discover that the flavonoids baicalein, scutellarein, and ganhuangenin, can inhibit the SARS-CoV-2 protease 3CLpro. Native mass spectrometry has also been used to find an ent-kaurane natural product, oridonin, that can bind to the viral protein Nsp9 and interfere with RNA replication. These natural lead compounds are under investigation for the development of therapeutic agents to prevent or treat SARS-CoV-2 infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9538385 | PMC |
http://dx.doi.org/10.1002/mas.21800 | DOI Listing |
Nihon Yakurigaku Zasshi
November 2024
SEEDSUPPLY INC.
In drug discovery and pharmacological research, early identification of target molecules for compounds with pharmacological effects is crucial. However, this process often requires significant effort and can be rate-limiting, thereby slowing down research progress. This paper introduces a simplified and rapid method for quick screening of binding compounds or proteins.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Relay Therapeutics, Inc., Cambridge, Massachusetts 02139, United States.
Rapid equilibrium dialysis (RED) is predominantly used for the characterization of drug absorption, distribution, metabolism, and excretion (ADME) properties in plasma and biological fluids. We describe herein improvements in the use of RED in conjunction with mass spectrometry (RED-MS) to enable robust binding affinity measurements of small molecules for recombinant proteins and complexes from a single dialysis data set. The affinities calculated from RED-MS correlated well with measurements by both surface plasmon resonance (SPR) and affinity selection mass spectrometry (AS-MS).
View Article and Find Full Text PDFChemMedChem
November 2024
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, 10065, USA.
Inducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules.
View Article and Find Full Text PDFDrug Discov Today
October 2024
Hit Discovery, Discovery Science, AstraZeneca R&D, Cambridge CB2 0AA, UK.
Identification of high-quality hit chemical matter is of vital importance to the success of drug discovery campaigns. However, this goal is becoming ever harder to achieve as the targets entering the portfolios of pharmaceutical and biotechnology companies are increasingly trending towards novel and traditionally challenging to drug. This demand has fuelled the development and adoption of numerous new screening approaches, whereby the contemporary hit identification toolbox comprises a growing number of orthogonal and complementary technologies including high-throughput screening, fragment-based ligand design, affinity screening (affinity-selection mass spectrometry, differential scanning fluorimetry, DNA-encoded library screening), as well as increasingly sophisticated computational predictive approaches.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA.
Inducible T cell co-stimulator (ICOS) is a positive immune checkpoint receptor expressed on the surface of activated T cells, which could promote cell function after being stimulated with ICOS ligand (ICOS-L). Although clinical benefits have been reported in the ICOS modulation-based treatment for cancer and autoimmune disease, current modulators are restricted in biologics, whereas ICOS-targeted small molecules are lacking. To fill this gap, we performed an affinity selection mass spectrometry (ASMS) screening for ICOS binding using a library of 15,600 molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!