Grapevine downy mildew, caused by Plasmopara viticola, is one of the most devastating diseases in viticulture. Plasmopara viticola secretes RxLR effectors to modulate immune responses in grapevine. Here, we report an RxLR effector RxLR50253 from P. viticola that can interfere with plant immune response and thus promote pathogen colonization. RxLR50253 was induced at an early stage of P. viticola infection and could suppress elicitor (INF1 and Bax)-triggered cell death. RxLR50253 promote pathogen colonization in both tobacco and grapevine leaves. VpBPA1 was found to be the host target of RxLR50253 by yeast two-hybrid screening, and interaction between RxLR50253 and VpBPA1 was confirmed by multiple in vivo and in vitro assays. Further analysis revealed that VpBPA1 promoted pathogen colonization and decreased H O accumulation in transgenic tobacco and grapevine, while there was enhanced resistance and H O accumulation in NbBPA1-silenced Nicotiana benthamiana leaves. Moreover, transient expression of VpBPA1 in NbBPA1-silenced N. benthamiana leaves could reduce the accumulation of H O . Experiments in vivo demonstrated that RxLR50253 inhibits degradation of VpBPA1. Taken together, our findings showed that RxLR50253 targets and stabilizes VpBPA1 to attenuate plant immunity through decreasing H O accumulation during pathogen infection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15933DOI Listing

Publication Analysis

Top Keywords

plasmopara viticola
12
pathogen colonization
12
rxlr effector
8
plant immunity
8
promote pathogen
8
tobacco grapevine
8
benthamiana leaves
8
vpbpa1
7
rxlr50253
7
viticola
5

Similar Publications

Traditional assessments of grapevine susceptibility to grapevine downy mildew (GDM) caused by rely on the visual evaluation of leaf symptoms. In this study, we used a well-established quantitative real-time PCR TaqMan assay (real-time PCR) to quantify the number of infecting 12 grapevine cultivars under controlled conditions. The molecular disease index (MDI), derived from molecular detection methods, reflects the relative abundance of pathogens in plant tissues during the latent infection phase.

View Article and Find Full Text PDF

Background: Priming plants with natural products is extensively studied in the agricultural field to reduce the use of synthetic and copper-based pesticides. Previous studies have shown that Oregano essential oil vapour (OEOV) is an effective priming agent against downy mildew (DM) in grapevine (Vitis vinifera L. cv.

View Article and Find Full Text PDF

Plasmopara viticola causes grape downy mildew, one of the most notorious diseases of cultivated grapes that damage vineyards worldwide. The pathogen secretes various effector molecules to infect and modulate the host biological processes. In this study, we aimed to evaluate the roles of KPvRxLR27, an arginine-any amino acid-leucine-arginine (RxLR) effector isolated from P.

View Article and Find Full Text PDF

The implementation of genome editing strategies in grapevine is the easiest way to improve sustainability and resilience while preserving the original genotype. Among others, the Mildew Locus-O (MLO) genes have already been reported as good candidates to develop powdery mildew-immune plants. A never-explored grapevine target is NPR3, a negative regulator of the systemic acquired resistance.

View Article and Find Full Text PDF

Plasmopara viticola, the causal agent of grapevine downy mildew, is a biotrophic oomycete engaged in a tight coevolutionary relationship with its host. Rapid adaptation of the pathogen is favored by annual sexual reproduction that generates genotypic diversity. With the aim of studying the recombination landscape across the P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!