Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Psychrotrophs are extremophilic microorganisms that grow optimally in low temperature having many unique bioactive molecules of biotechnological applications. In this study, we characterized a pigment from an arctic bacterium with protective activity towards UV exposure.
Methods And Results: The present research reports isolation and characterization of a psychrotrophic bacteria, RSAP2, from the soil sample of NyAlesund (78°56"N, 11°54"E), Svalbard, Norway. The strain showed closest 16S rRNA gene sequence similarity (99.9%) with Kocuria indica NIO-1021. RSAP2 is a Gram-positive, coccoid aerobe which produces a yellow pigment. The optimal parameters for pigment production while grown in LB medium were 3% (w/v) NaCl and 4 days of incubation of the culture at 20°C and pH 9 with shaking (180 rpm). The pigment was extracted in methanol and acetone (2:1) and further purified through column chromatography. It was characterized by mass spectrometry, UV-visible, fluorescence, IR, H NMR, C NMR spectroscopy and CHNS/O analysis. The pigment has a molecular weight of about 258 daltons and the molecular formula was determined as C H N O and is a quinoline derivative. We show that the pigment can protect Escherichia coli against UV-mediated mutagenesis. We further demonstrate that the pigment displays a significant antimicrobial effect and in sublethal concentrations it impairs biofilm formation ability of the model organism Staphylococcus aureus.
Conclusions: The pigment of a psychrotrophic Arctic bacterium, most likely a strain of K. indica, was purified and its chemical structure was determined. The quinoline-based pigment has the ability to protect live cells from UV induced damage.
Significance And Impact Of Study: Analysis and characterization of this newly isolated quinoline-based pigment is a potential candidate for future application in skin care products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15760 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!