Interaction between nanometer calcium oxalate and renal epithelial cells repaired with carboxymethylated polysaccharides.

Biomater Adv

Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China. Electronic address:

Published: June 2022

Objective: Injury of renal tubular epithelial cells (HK-2) is an important cause of kidney stone formation. In this article, the repairing effect of polysaccharide (PCP0) extracted from the traditional Chinese medicine Poria cocos and its carboxymethylated derivatives on damaged HK-2 cells was studied, and the differences in adhesion and endocytosis of the cells to nanometer calcium oxalate monohydrate (COM) before and after repair were explored.

Methods: Sodium oxalate (2.8 mmol/L) was used to damage HK-2 cells to establish a damage model, and then Poria cocos polysaccharides (PCPs) with different carboxyl (COOH) contents were used to repair the damaged cells. The changes in the biochemical indicators of the cells before and after the repair and the changes in the ability to adhere to and internalize nano-COM were detected.

Results: The natural PCPs (PCP0, COOH content = 2.56%) were carboxymethylated, and three carboxylated modified Poria cocos with 7.48% (PCP1), 12.07% (PCP2), and 17.18% (PCP3) COOH contents were obtained. PCPs could repair the damaged HK-2 cells, and the cell viability was enhanced after repair. The cell morphology was gradually repaired, the proliferation and healing rate were increased. The ROS production was reduced, and the polarity of the mitochondrial membrane potential was restored. The level of intracellular Ca ions decreased, and the autophagy response was weakened.

Conclusion: The cells repaired by PCPs inhibited the adhesion to nano-COM and simultaneously promoted the endocytosis of nano-COM. The endocytic crystals mainly accumulated in the lysosome. Inhibiting adhesion and increasing endocytosis could reduce the nucleation, growth, and aggregation of cell surface crystals, thereby inhibiting the formation of kidney stones. With the increase of COOH content in PCPs, its ability to repair damaged cells, inhibit crystal adhesion, and promote crystal endocytosis all increased, that is, PCP3 with the highest COOH content showed the best ability to inhibit stone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.212854DOI Listing

Publication Analysis

Top Keywords

poria cocos
12
hk-2 cells
12
repair damaged
12
cells
10
nanometer calcium
8
calcium oxalate
8
epithelial cells
8
cells repaired
8
stone formation
8
damaged hk-2
8

Similar Publications

A Chromosome-Scale Genome of and Transcriptome-Based Screening for Light-Induced Genes That Promote Triterpene Biosynthesis.

J Fungi (Basel)

January 2025

Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

is an important fungus with medicinal properties and a significant role in lignocellulose degradation. In this study, we constructed a high-quality chromosome-level genome of using Illumina, PacBio HiFi, and Hi-C sequencing technologies. The assembled genome is 47.

View Article and Find Full Text PDF

Purpose: Pachyman, derived from Poria cocos, has been used to treat gouty arthritis (GA) for thousands of years, although its precise role and mechanisms remain unclear. Herein, we investigate the therapeutic effects of pachyman on GA and explore their underlying mechanisms.

Methods: Network pharmacology and experimental methods were employed to investigate the therapeutic mechanisms of pachyman against GA.

View Article and Find Full Text PDF

Carboxymethyl polysaccharides from Poria cocos (Schw.) wolf: Structure, immunomodulatory, anti-inflammatory, tumor cell proliferation inhibition and antioxidant activity.

Int J Biol Macromol

January 2025

Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.. Electronic address:

This study comprehensively explores the relationship between the structure of carboxymethyl-pachymaran (CMP) and its diverse biological activities, including immunomodulation, anti-inflammatory effects, tumor cell proliferation inhibition, and antioxidant activity. By adjusting preparation parameters, highly purified CMP samples with varying degrees of substitution (DS) and molecular weights (Mw) were successfully obtained. The results indicate that CMP, composed primarily of β-D-glucan, exhibits different levels of activity depending on its structural characteristics.

View Article and Find Full Text PDF

De novo RNA-sequencing of Wolfiporia cocos mycelia cultured with filter paper composed of cellulose as the sole carbon source revealed a total of five expressed β-glucosidase genes. Among these, the β-glucosidase named Wcbg1B-1, which is composed of 539 amino acid residues and belongs to the GH1 family, had the highest mRNA abundance, accounting for 65 % of the total mRNA of the five expressed β-glucosidases. The recombinant Wcbg1B-1 was successfully expressed in Escherichia coli, with an optimal pH of 6.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!