Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents.

Biomater Adv

Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain. Electronic address:

Published: June 2022

A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.212823DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
fibrous silica
12
triple negative
12
negative breast
12
based fibrous
8
silica nanoparticles
8
chemotherapeutic agents
8
systems synergistic
8
silica
5
synthesis theranostic
4

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Purpose: Age stratification influences the clinicopathological features and survival outcomes of breast cancer. We aimed to understand the effect of age on gene variants in young Chinese women with breast cancer compared with those from The Cancer Genome Atlas (TCGA).

Methods: Enrolled patients ≤ 40 years old (N = 370) underwent germline or somatic genetic testing using a 32-gene hereditary cancer panel at Fujian Union Hospital.

View Article and Find Full Text PDF

Purpose: There is an increasing incidence of young breast cancer (YBC) patients with uncertainty surrounding the factors and patterns that are contributing.

Methods: We obtained characteristics and survival data from 206,156 YBC patients (≤ 40 years of age) diagnosed between 2005 and 2019 from the National Cancer Database (NCDB). Patients were subdivided into two comparison groups based on year of diagnosis (2005-2009, Old vs.

View Article and Find Full Text PDF

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Background: Bilateral risk-reducing mastectomies (RRMs) have been proven to decrease the risk of breast cancer in patients at high risk owing to family history or having pathogenic genetic mutations. However, few resources with consolidated data have detailed the patient experience following surgery. This systematic review features patient-reported outcomes for patients with no breast cancer history in the year after their bilateral RRM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!