Hydrogen sulfide (HS), an important endogenous signaling molecule, plays an important neuroprotective role in the central nervous system. However, there is no ideal delivery material or method involving the sustained and controlled release of HS for clinical application in brain diseases. Silk fibroin (SF)-based hydrogels have become a potentially promising strategy for local, controlled, sustained drug release in the treatment of various disorders. Here, we show a silk fibroin (SF)-based hydrogel with sustained HS delivery (HS@SF hydrogel) is effective in treating brain injury through stereotactic orthotopic injection in a severe intracerebral hemorrhage (ICH) mouse model. In this study, we observed HS@SF hydrogel sustained HS release in vitro and in vivo. The physicochemical properties of HS@SF hydrogel were studied using FE-SEM, Raman spectroscopy and Rheological analysis. Treatment with HS@SF hydrogel attenuated brain edema, reduced hemorrhage volume and improved the recovery of neurological deficits after severe ICH following stereotactic orthotopic injection. Double immunofluorescent staining also revealed that HS@SF hydrogel may reduce cell pyroptosis in the striatum, cortex and hippocampus. However, when using endogenous HS production inhibitor AOAA, HS@SF hydrogel could not suppress ICH-induced cell pyroptosis. Hence, the therapeutic effect of the HS@SF hydrogel may be partly the result of the slow-release of HS and/or the effect of the SF hydrogel on the production of endogenous HS. Altogether, the results exhibit promising attributes of injectable silk fibroin hydrogel and the utility of HS-loaded injectable SF hydrogel as an alternative biomaterial toward brain injury treatment for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.212743DOI Listing

Publication Analysis

Top Keywords

hs@sf hydrogel
28
hydrogel
12
hydrogel sustained
12
silk fibroin
12
injectable hydrogel
8
hydrogen sulfide
8
severe intracerebral
8
intracerebral hemorrhage
8
clinical application
8
fibroin sf-based
8

Similar Publications

Annually, thousands of individuals suffer from skin injuries resulting from trauma, surgeries, or diabetes. Inadequate wound treatment can delay healing and increase the risk of severe infections. In this context, a promising synthetic polymer with potent antimicrobial properties, Poly{2-[(methacryloyloxy)ethyl]trimethylammonium chloride} (PMETAC), is synthesized and crosslinked with N,N'-Methylenebis(acrylamide) (BIS) in the presence of Chitosan (CH), a natural, biocompatible polysaccharide that promotes cell regeneration and provides additional beneficial properties.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!