Conventional techniques for synthesizing GQDs have a poor quantum yield (QY) that restricts their biological applications. Herein, we present a rapid, cost-effective and high quantum yield synthesis of nitrogen-doped graphene quantum dots (N-GQDs) through a scientific microwave reactor. The reaction parameters like microwave irradiation time, temperature, precursor concentration and pressure were optimized for achieving high quantum yield. The prepared N-GQDs exhibit bright blue fluorescence and excitation independent emission property with a quantum yield of 42.81%. In-vivo investigations on C. elegans revealed that the as-prepared N-GQDs are exceptionally biocompatible and maintain the normal physiological functioning of the primary and secondary targeted organs in nematodes. The synergetic effect of intestinal barrier and defecation behavior mitigates N-GQDs translocation into reproductive organs of nematode. In addition, the N-GQDs modified GCE was tested for electrochemical sensing characteristics towards the anti-tuberculosis drug isoniazid (INZ). The N-GQDs showed appreciable electrocatalytic performance towards INZ with high sensitivity (3.76 μA μM cm). The differential pulse voltammetry (DPV) analysis of N-GQDs exhibit a lower detection limit of 10.91 nM for INZ. The N-GQDs modified sensor exhibits good reproducibility, excellent anti-interference ability and excellent analytical performance for INZ in real samples like human blood serum and urine samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2022.212731 | DOI Listing |
Macromol Rapid Commun
January 2025
School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China.
A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.
View Article and Find Full Text PDFNat Mater
January 2025
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy.
Photoswitches are widely investigated molecules because upon exposure to selected light irradiation, they are able to undergo structural, and hence optical, changes. To fully exploit their responsiveness to irradiation, the quantum efficiency of the forward and back reactions is a fundamental parameter, whose accurate determination is critical. In this work, the spectral evolution of a biomimetic switch, which undergoes / photoinduced isomerization, is spectrophotometrically examined.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, Danmarks Tekniske Universitet, Department of Physics, Technical University of Denmark, Kgs Lyngby, 2800, DENMARK.
The magnetic properties of solids are typically analyzed in terms of Heisenberg models where the electronic structure is approximated by interacting localized spins. However, even in such models the evaluation of thermodynamic properties constitutes a major challenge and is usually handled by a mean field decoupling scheme. The random phase approximation (RPA) comprises a common approach and is often applied to evaluate critical temperatures although it is well known that the method is only accurate well below the critical temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!