AI Article Synopsis

  • The interaction between the microbiota and the immune system is crucial for regulating immune responses and forming immunological memory; disturbances in this relationship can lead to improper immune reactions and contribute to conditions like neurodegeneration.
  • The study used bioinformatics to explore how microbiota (bacteria and fungi) influence immune responses and the formation of memory cells, and looked at these interactions in the context of neurodegenerative diseases like ALS, MS, PD, and AD.
  • Findings revealed that microbiota can modulate both innate and adaptive immune responses, particularly affecting microglial activation related to neurodegeneration, while suggesting a stronger role for microbiota in MS compared to other neurodegenerative diseases.

Article Abstract

Bidirectional cross-talk between commensal microbiota and the immune system is essential for the regulation of immune responses and the formation of immunological memory. Perturbations of microbiome-immune system interactions can lead to dysregulated immune responses against invading pathogens and/or to the loss of self-tolerance, leading to systemic inflammation and genesis of several immune-mediated pathologies, including neurodegeneration. In this paper, we first investigated the contribution of the immunomodulatory effects of microbiota (bacteria and fungi) in shaping immune responses and influencing the formation of immunological memory cells using a network-based bioinformatics approach. In addition, we investigated the possible role of microbiota-host-immune system interactions and of microbiota-virus interactions in a group of neurodegenerative diseases (NDs): Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Parkinson's disease (PD) and Alzheimer's disease (AD). Our analysis highlighted various aspects of the innate and adaptive immune response systems that can be modulated by microbiota, including the activation and maturation of microglia which are implicated in the development of NDs. It also led to the identification of specific microbiota components which might be able to influence immune system processes (ISPs) involved in the pathogenesis of NDs. In addition, it indicated that the impact of microbiota-derived metabolites in influencing disease-associated ISPs, is higher in MS disease, than in AD, PD and ALS suggesting a more important role of microbiota mediated-immune effects in MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344014PMC
http://dx.doi.org/10.3389/fimmu.2022.843128DOI Listing

Publication Analysis

Top Keywords

immune responses
12
immunomodulatory effects
8
microbiota-derived metabolites
8
neurodegenerative diseases
8
network-based bioinformatics
8
immune system
8
formation immunological
8
immunological memory
8
system interactions
8
immune
6

Similar Publications

Isatidis root polysaccharides ameliorates post-weaning diarrhea by promoting intestinal health and modulating the gut microbiota in piglets.

Vet Q

December 2025

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.

This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.

View Article and Find Full Text PDF

Catalysis and specifically autocatalysis are the quintessential building blocks of life. Yet, although autocatalytic networks are necessary, they are not sufficient for the emergence of life-like properties, such as replication and adaptation. The ultimate and potentially fatal threat faced by molecular replicators is parasitism; if the polymerase error rate exceeds a critical threshold, even the fittest molecular species will disappear.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!