Cationic Carbon Nanoparticles Induce Inflammasome-Dependent Pyroptosis in Macrophages Lysosomal Dysfunction.

Front Toxicol

Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.

Published: July 2022

Carbon nanomaterials, including carbon dots (CDs), form a growing family of engineered nanoparticles (NPs) with widespread applications. As the rapid expansion of nanotechnologies raises safety concerns, interaction of NPs with the immune system is receiving a lot of attention. Recent studies have reported that engineered NPs may induce macrophage death by pyroptosis. Therefore, this study investigated whether cationic CDs induce pyroptosis in human macrophages and assessed the role of inflammasome and lysosome in this process. Cationic CDs were synthetized by microwave-assisted pyrolysis of citric acid and high molecular weight branched polyethyleneimine. The NPs evoked a dose-dependent viability loss in THP-1-derived macrophages. A cell leakage, an increase in IL-1β secretion and an activation of caspase-1 were also observed in response to the NPs. Inhibition of caspase-1 decreased CD-induced cell leakage and IL-1β secretion, while restoring cell viability. Besides, CDs triggered swelling and loss of integrity of lysosome, and inhibition of the lysosomal enzyme cathepsin B decreased CD-induced IL-1β secretion. Thus, our data provide evidence that cationic CDs induce inflammasome-dependent pyroptosis in macrophages lysosomal dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345407PMC
http://dx.doi.org/10.3389/ftox.2022.925399DOI Listing

Publication Analysis

Top Keywords

cationic cds
12
il-1β secretion
12
induce inflammasome-dependent
8
inflammasome-dependent pyroptosis
8
pyroptosis macrophages
8
macrophages lysosomal
8
lysosomal dysfunction
8
cds induce
8
cell leakage
8
decreased cd-induced
8

Similar Publications

Background: Urate transporter 1 (URAT1) is a well-known therapeutic target for reducing urate levels in the treatment of hyperuricemia and gout. However, current pharmacological studies have failed to evaluate the efficacy of URAT1 inhibitors in non-primate animal models. We established a human URAT1 (hURAT1) transgenic knock-in (KI) mouse model to assess uricosuric agents' effectiveness and characterize URAT1-caused pathogenesis.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how modifying the cyclodextrin (CD) ring structure with hydroxyl groups and functional groups enhances its potential for delivering therapeutic siRNA.
  • Multiple cationic amphiphilic CDs were synthesized and evaluated for their ability to encapsulate siRNA and improve gene silencing efficiency in A549-luc cells.
  • Key findings revealed that CDs with primary amine modifications at positions C2 and C3 significantly increased gene knockdown levels, achieving up to 80% with specific linker modifications.
View Article and Find Full Text PDF

Depending on their bandgaps, mixed metal layered chalcogenides are potential candidates for thermoelectric and photovoltaic applications. Herein, we reported the exploratory synthesis of Sr-Zr-Cu- ( = S/Se) systems, resulting in the identification of two novel quaternary chalcogenides: SrZrCuS and SrZrCuSe. These isoelectronic compounds (SrZrCu) crystallized in two different structural types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!