AI Article Synopsis

  • * In experiments with adult female Wistar rats, both intravenous and topical administration of angiotensin-(1-7) significantly increased intravesical pressure (IP) without affecting mean arterial pressure (MAP), heart rate (HR), or renal conductance (RC).
  • * Analysis showed that Mas receptors and ACE-2 are expressed in the bladder, indicating that angiotensin-(1-7) not only affects the UB but may also be locally produced there.

Article Abstract

Angiotensin-(1-7) is a peptide produced by different pathways, and regardless of the route, the angiotensin-converting enzyme 2 (ACE-2) is involved in one of the steps of its synthesis. Angiotensin-(1-7) binds to Mas receptors localized in different cells throughout the body. Whether angiotensin-(1-7) exerts any action in the urinary bladder (UB) is still unknown. We investigated the effects of intravenous and topical () administration of angiotensin-(1-7) on intravesical pressure (IP) and cardiovascular variables. In addition, the Mas receptors and ACE-2 gene and protein expression were analyzed in the UB. Adult female Wistar rats were anesthetized with 2% isoflurane in 100% O and submitted to the catheterization of the femoral artery and vein for mean arterial pressure (MAP) and heart rate (HR) recordings, and infusion of drugs, respectively. The renal blood flow was acquired using a Doppler flow probe placed around the left renal artery and the renal conductance (RC) was calculated as a ratio of Doppler shift (kHz) and MAP. The cannulation of the UB was performed for IP recording. We observed that angiotensin-(1-7) either administered intravenously [115.8 ± 28.6% angiotensin-(1-7) vs. -2.9 ± 1.3% saline] or topically [147.4 ± 18.9% angiotensin-(1-7) vs. 3.2 ± 2.8% saline] onto the UB evoked a significant ( < 0.05) increase in IP compared to saline and yielded no changes in MAP, HR, and RC. The marked response of angiotensin-(1-7) on the UB was also investigated using quantitative real-time polymerase chain reaction and western blotting assay, which demonstrated the mRNA and protein expression of Mas receptors in the bladder, respectively. ACE-2 mRNA and protein expression was also observed in the bladder. Therefore, the findings demonstrate that angiotensin-(1-7) acts in the UB to increase the IP and suggest that this peptide can be also locally synthesized in the UB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345415PMC
http://dx.doi.org/10.3389/fphys.2022.920636DOI Listing

Publication Analysis

Top Keywords

mas receptors
12
protein expression
12
angiotensin-1-7
9
urinary bladder
8
mrna protein
8
unveiling angiotensin-1-7
4
angiotensin-1-7 actions
4
actions urinary
4
bladder
4
bladder female
4

Similar Publications

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

Cancer pain is one of the most common symptoms in patients with advanced cancer. In this study, we aimed to investigate the effects of the -related gene C (MrgC) receptors on bone cancer pain. Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured after the inoculation of Walker 256 mammary gland carcinoma cells into the tibia of adult Sprague-Dawley rats.

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

IL-18 and IL-18BP: A Unique Dyad in Health and Disease.

Int J Mol Sci

December 2024

Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel.

Interleukin-18 (IL-18) serves a dual function in the immune system, acting as a "double-edged sword" cytokine. Depending on the microenvironment and timing, IL-18 can either drive harmful inflammation or restore immune homeostasis. Pathologies characterized by elevated IL-18, recently proposed to be termed IL-18opathies, highlight the therapeutic potential for IL-18 blockade.

View Article and Find Full Text PDF

Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!