Practical implementation of minimally invasive biomedical applications has been a long-sought goal for microrobots. In this field, most previous studies only demonstrate microrobots with locomotion ability or performing a single task, unable to be functionalized effectively. Here, we propose a biocompatible shape memory alloy helical microrobot with regulative structure transformation, making it possible to adjust its motion behavior and mechanical properties precisely. Especially, towards vascular occlusion problem, these microrobots reveal a fundamental solution strategy in the mechanical capability using shape memory effect. Such shape-transformable microrobots can not only manipulate thrust and torque by structure to enhance the unclogging efficiency as a microdriller but also utilize the high work energy to apply the expandable helical tail as a self-propulsive stent. The strategy takes advantage of untethered manipulation to operate microsurgery without unnecessary damage. This study opens a route to functionalize microrobots via accurate tuning in structures, motions, and mechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297727 | PMC |
http://dx.doi.org/10.34133/2022/9842752 | DOI Listing |
Heliyon
January 2025
Department of Journalism, Faculty of Communication, Suleyman Demirel University, Isparta, Turkiye.
The rise of solo travel has become a significant trend in the leisure sphere; nonetheless, there is limited understanding of how solo travelers utilize social media throughout their travel process. This lack of insight represents a research problem, as it hinders the ability to enhance solo travel experiences through social media engagement. Addressing this gap, this study investigates the specific ways in which solo leisure travelers experience and engage with social media during their journeys.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFDev Rev
March 2025
Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA.
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.
View Article and Find Full Text PDFACS Macro Lett
January 2025
The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!