This protocol describes the use of fluorescence recovery after photobleaching (FRAP) to investigate the dynamics of Matrin-3 (MATR3) condensates in live budding yeast. We detail how to generate yeast strains containing MATR3 with an enhanced green fluorescent protein (eGFP) tag and induce MATR3-eGFP expression. We provide steps to prepare slides of immobilized yeast cells and perform FRAP imaging and data analysis. This protocol can be broadly applied to study condensate dynamics of a range of proteins in different model systems. For complete details on the use and execution of this protocol, please refer to Sprunger et al. (2022).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9344031 | PMC |
http://dx.doi.org/10.1016/j.xpro.2022.101592 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States.
The simulation of non-Markovian quantum dynamics plays an important role in the understanding of charge and exciton dynamics in the condensed phase environment, yet such a simulation remains computationally expensive on classical computers. In this work, we develop a variational quantum algorithm that is capable of simulating non-Markovian quantum dynamics on quantum computers. The algorithm captures the non-Markovian effect by employing the Ehrenfest trajectories and Monte Carlo sampling of their thermal distribution.
View Article and Find Full Text PDFSmall
January 2025
Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China.
Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.
View Article and Find Full Text PDFFEBS J
January 2025
Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
Intracellular calcium (Ca) is a crucial signaling molecule involved in multiple cellular processes. However, the functional role of Ca in terminal erythropoiesis remains unclear. Here, we uncovered the dynamics of intracellular Ca levels during mouse erythroid development.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFCurr Opin Struct Biol
January 2025
Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada. Electronic address:
The tools of structural biology have undergone remarkable advances in the past decade. These include new computational and experimental approaches that have enabled studies at a level of detail - and ease - that were not previously possible. Yet, significant deficiencies in our understanding of biomolecular function remain and new challenges must be overcome to go beyond static pictures towards a description of function in terms of structural dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!