A colorimetric sensor array designed on a paper substrate with a microfluidic structure has been developed. This array is capable of detecting COVID-19 disease by tracking metabolites of urine samples. In order to determine minor metabolic changes, various colorimetric receptors consisting of gold and silver nanoparticles, metalloporphyrins, metal ion complexes, and pH-sensitive indicators are used in the array structure. By injecting a small volume of the urine sample, the color pattern of the sensor changes after 7 min, which can be observed visually. The color changes of the receptors (recorded by a scanner) are subsequently calculated by image analysis software and displayed as a color difference map. This study has been performed on 130 volunteers, including 60 patients infected by COVID-19, 55 healthy controls, and 15 cured individuals. The resulting array provides a fingerprint response for each category due to the differences in the metabolic profile of the urine sample. The principal component analysis-discriminant analysis confirms that the assay sensitivity to the correctly detected patient, healthy, and cured participants is equal to 73.3%, 74.5%, and 66.6%, respectively. Apart from COVID-19, other diseases such as chronic kidney disease, liver disorder, and diabetes may be detectable by the proposed sensor. However, this performance of the sensor must be tested in the studies with a larger sample size. These results show the possible feasibility of the sensor as a suitable alternative to costly and time-consuming standard methods for rapid detection and control of viral and bacterial infectious diseases and metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361914 | PMC |
http://dx.doi.org/10.1007/s00604-022-05423-1 | DOI Listing |
J Fluoresc
January 2025
Department of Basic Sciences, Sari University of Agricultural Sciences and Natural Resources, P.O.Box 578, Sari, Iran.
Among the various cations, the Fe ion is one of the most critical transition metal ions in living cells for many cellular functions and enzymatic activities. The decrease or overloading of Fe can lead to different disruptions in humans. Also, Fe, highly toxic, is very common in all industrial wastewater.
View Article and Find Full Text PDFDalton Trans
January 2025
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.
Food Chem X
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Herein, the miniaturized thermal purge-and-trap (MTPT) device combined with self-calibration colorimetric/surface-enhanced Raman spectroscopy (SERS) dual-model optical sensors were designed for effective analysis of sulfur dioxide (SO) in wine. The SO can be rapidly separated from wine and enriched by MTPT device, ensuring colorimetric/SERS dual-model optical sensing based on Karl Fischer reaction. The high separation efficiency of miniaturized MTPT device combined with self-calibration of dual-model optical sensors significantly alleviate matrix interference and improve the detection accuracy.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea.
In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!