In many complex oxides, the oxygen vacancy formation is a promising route to modify the material properties such as a superconductivity and an oxygen diffusivity. Cation substitutions and external strain have been utilized to control the concentration and diffusion of oxygen vacancies, but the mechanisms behind the controls are not fully understood. Using first-principles calculations, we find how Sr doping and external strain greatly enhances the diffusivity of oxygen vacancies in LaSrCuO (LSCO) in the atomic level. In hole-doped case (2x > δ), the formation energy of an apical vacancy in the LaO layer is larger than its equatorial counterpart by 0.2 eV that the bottleneck of diffusion process is for oxygen vacancies to escape equatorial sites. Such an energy difference can be reduced and even reversed by either small strain (< 1.5%) or short-range attraction between Sr and oxygen vacancy, and in turn, the oxygen diffusivity is greatly enhanced. For fully compensated hole case (2x ≦ δ), the formation energy of an apical vacancy becomes too high that most oxygen vacancies cannot move but would be trapped at equatorial sites. From our electronic structure analysis, we found that the contrasting change in the formation energy by Sr doping and external strain is originated from the different localization natures of electron carrier from both types of oxygen vacancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352678 | PMC |
http://dx.doi.org/10.1038/s41598-022-17376-9 | DOI Listing |
J Phys Condens Matter
January 2025
South China Normal University, School of Physics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangzhou, 510631, CHINA.
With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we examined the lattice thermal conductivity of the van der Waals magnetic semiconductor CrSBr from bulk to monolayer structures using first-principles calculations and the phonon Boltzmann transport equation. Our results indicated that lattice thermal conductivity show anisotropy and CrSBr bilayer exhibits lower thermal conductivity at all temperatures.
View Article and Find Full Text PDFVet World
November 2024
Department of Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Al-Qadisiyah, Baghdad 1001, Iraq.
Background And Aim: Malignant diseases are among the most common and deadly illnesses that are often spread due to lifestyle choices. These diseases are caused by unchecked cell growth, which can be curable if detected early. Cancer treatment is dependent on various internal and external factors.
View Article and Find Full Text PDFACS Omega
January 2025
Department of New Energy Science and Engineering, Xiamen University Malaysia, Sepang 43900, Malaysia.
Using the free energy of hydrogen adsorption (Δ ) as the indicator, five borophene phases are previously shown to possess high catalytic activity for the hydrogen evolution reaction (HER). On these borophene phases, we investigate the role of the coordination number (CN = 4, 5, 6) of the adsorption sites and the puckering of the adsorption site. CN is discovered to have a profound effect on the Δ distribution, charge, and puckering height () of adsorption sites.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Department of Bioprocess Engineering, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany.
Background: In biomanufacturing of surface-active agents, such as rhamnolipids, excessive foaming is a significant obstacle for the development of high-performing bioprocesses. The exploitation of the inherent tolerance of Pseudomonas putida KT2440, an obligate aerobic bacterium, to microaerobic conditions has received little attention so far. Here low-oxygen inducible promoters were characterized in biosensor strains and exploited for process control under reduction of foam formation by low aeration and stirring rates during biosynthesis of rhamnolipids.
View Article and Find Full Text PDFSci Rep
January 2025
School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
In natural environments, most rocks possess internal fissures and are often exposed to diverse external loads arising from engineering activities and ground stress, among other factors. This study aims to explore the influence of different loading rates on the mechanical properties and acoustic emission (AE) characteristics of fissured rocks and to develop an intrinsic damage model. To achieve this, prefabricated fissured rock specimens that mimic natural rocks were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!