A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of Temporal Integration in the Lateral Geniculate Nucleus. | LitMetric

Before visual information from the retina reaches primary visual cortex (V1), it is dynamically filtered by the lateral geniculate nucleus (LGN) of the thalamus, the first location within the visual hierarchy at which nonretinal structures can significantly influence visual processing. To explore the form and dynamics of geniculate filtering we used data from monosynpatically connected pairs of retinal ganglion cells (RGCs) and LGN relay cells in the cat that, under anesthetized conditions, were stimulated with binary white noise and/or drifting sine-wave gratings to train models of increasing complexity to predict which RGC spikes were relayed to cortex, what we call "relay status." In addition, we analyze and compare a smaller dataset recorded in the awake state to assess how anesthesia might influence our results. Consistent with previous work, we find that the preceding retinal interspike interval (ISI) is the primary determinate of relay status with only modest contributions from longer patterns of retinal spikes. Including the prior activity of the LGN cell further improved model predictions, primarily by indicating epochs of geniculate burst activity in recordings made under anesthesia, and by allowing the model to capture gain control-like behavior within the awake LGN. Using the same modeling framework, we further demonstrate that the form of geniculate filtering changes according to the level of activity within the early visual circuit under certain stimulus conditions. This finding suggests a candidate mechanism by which a stimulus specific form of gain control may operate within the LGN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402337PMC
http://dx.doi.org/10.1523/ENEURO.0088-22.2022DOI Listing

Publication Analysis

Top Keywords

lateral geniculate
8
geniculate nucleus
8
geniculate filtering
8
geniculate
5
visual
5
lgn
5
dynamics temporal
4
temporal integration
4
integration lateral
4
nucleus visual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!