Total and dissolved phosphorus losses from agricultural headwater streams during extreme runoff events.

Sci Total Environ

Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada.

Published: November 2022

Eutrophication continues to be a concerning global water quality issue. Managing and mitigating harmful algal blooms demands clear information on the conditions promoting large phosphorus losses from contributing watersheds. Of particular concern is the amount and form of phosphorus loading to receiving water bodies during extreme runoff events, which are expected to increase in frequency due to climate change. Five years (2015 to 2020) of water quantity and quality data from 11 agricultural watersheds in the lower Great Lakes basin were analyzed and used to model total and dissolved phosphorus losses. This study aimed to assess temporal dynamics in phosphorus concentrations and losses over runoff events covering a wide range of hydrologic conditions and to quantify their relative importance on annual phosphorus losses. Event concentration-discharge relationships for total and dissolved phosphorus were hysteretic and had contrasting dominant patterns across watersheds. The proportion of annual phosphorus losses during events was highly variable between watersheds, accounting for 47-94 %. Extreme events were particularly impactful: as few as three events per year were found to be responsible for nearly half of total phosphorus (20-50 %) and total dissolved phosphorus (14-44 %) losses. Variability in total and dissolved phosphorus losses and concentrations over a wide range of flow conditions suggests that event magnitude is an important control on the relative mobility of particulate and dissolved phosphorus fractions. This study showed that insights into nutrient dynamics and phosphorus budgets in the lower Great Lakes basin and agriculture dominated environments more broadly can be gained by assessing event nutrient losses with respect to flow conditions and patterns in concentration-discharge relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157736DOI Listing

Publication Analysis

Top Keywords

dissolved phosphorus
24
phosphorus losses
24
total dissolved
20
phosphorus
13
runoff events
12
losses
9
extreme runoff
8
lower great
8
great lakes
8
lakes basin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!