A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-tumorigenic epithelial breast cells and ionizing radiation cooperate in the enhancement of mesenchymal traits in tumorigenic breast cancer cells. | LitMetric

Non-tumorigenic epithelial breast cells and ionizing radiation cooperate in the enhancement of mesenchymal traits in tumorigenic breast cancer cells.

Life Sci

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Física, Laboratorio de Radioisótopos, Junín 956, C1113AAB Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Electronic address:

Published: October 2022

Aims: Radioresistance and recurrences are crucial hindrances in cancer radiotherapy. Fractionated irradiation can elicit a mesenchymal phenotype in irradiated surviving cells and a deep connection exists between epithelial mesenchymal transition, radioresistance, and metastasis. The aim of this study was to analyze the effect of the secretoma of irradiated non-tumorigenic mammary epithelial cells on surviving irradiated breast tumor cells regarding the gain of mesenchymal traits and migratory ability.

Main Methods: MDA-MB-231 and MCF-7 breast cancer cells, irradiated or not, were incubated with conditioned media from MCF-10A non-tumorigenic epithelial breast cells, irradiated or not. After five days, we evaluated the expression and localization of epithelial and mesenchymal markers (by western blot and indirect immunofluorescence), cell migration (using transwells) and metalloproteinases activity (by zymography). We also assessed TGF-β1 content in conditioned media by immunoblot, and the effect of A83-01 (a selective inhibitor of TGF-β receptor I) and PP2 (a Src-family tyrosine kinase inhibitor) on nuclear Slug and cell migration.

Key Findings: Conditioned media from MCF-10A cells caused phenotypic changes in breast tumor cells with attainment or enhancement of mesenchymal traits mediated at least in part by the activation of the TGF-β type I receptor and a signaling pathway involving Src activation/phosphorylation. The effects were more pronounced mostly in irradiated tumor cells treated with conditioned media from irradiated MCF-10A.

Significance: Our results suggest that non-tumorigenic epithelial mammary cells included in the irradiation field could affect the response to irradiation of post-surgery residual cancer cells enhancing EMT progression and thus modifying radiotherapy efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.120853DOI Listing

Publication Analysis

Top Keywords

conditioned media
16
non-tumorigenic epithelial
12
cells
12
mesenchymal traits
12
cancer cells
12
tumor cells
12
epithelial breast
8
breast cells
8
enhancement mesenchymal
8
breast cancer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!