Protein phosphorylation is one of the most commonly studied and ubiquitous post-translational modifications (PTMs), and defining site-specific phosphorylation is essential to understand basic and disease biology. However, the chemical properties and biological activities hamper the detection of non-canonical N-phosphorylation from biological samples, and the study of N-phosphorylation over the last half century has lagged behind canonical O-phosphorylation. Here, a mild-acidic method based-on SiO@DpaZn beads was developed for protein N-phosphorylation sites identification. The method was verified as an effective complement for neutral enrichment science the stability of N-phosphorylation varied with the protein context. We firstly verified the feasibility of the mild-acidic enrichment strategy by standard peptides. Totally, 301 and 1476 N-phosphorylation sites were identified from E. coli and HeLa, respectively, verifying the robust of the method. The results greatly enriched N-phosphorylation site database. Furthermore, the method provided the peptide sequence motif of the N-phosphorylation sites and the biological functions of the identified proteins. The work represented an important step forward in studying the role of N-phosphorylation and other labile phosphorylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2022.123740 | DOI Listing |
Viruses
November 2024
Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France.
The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order . P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models.
View Article and Find Full Text PDFCells
November 2024
Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
In the prokaryotic kingdom, protein phosphorylation serves as one of the most important posttranslational modifications (PTMs) and is involved in orchestrating a broad spectrum of biological processes. Here, we report an updated online server named the group-based prediction system for prokaryotic phosphorylation language model (GPS-pPLM), used for predicting phosphorylation sites (p-sites) in prokaryotes. For model training, two deep learning methods, a transformer and a deep neural network, were employed, and a total of 10 sequence features and contextual features were integrated.
View Article and Find Full Text PDFCurr Issues Mol Biol
October 2024
Research and Higher Education Center of UNEPROP, Hermosillo 83105, Mexico.
Previously, we described that Adenine, Thymine, Cytosine, and Guanine nucleobases were superconductors in a quantum superposition of phases on each side of the central hydrogen bond acting as a Josephson Junction. Genomic DNA has two strands wrapped helically around one another, but during transcription, they are separated by the RNA polymerase II to form a molecular condensate called the transcription bubble. Successive steps involve the bubble translocation along the gene body.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
September 2024
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
Se Pu
July 2024
State Key Laboratory of Medical Proteomics, National Chromatographic R.& A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Protein phosphorylation is one of the most common and important post-translational modifications that regulates almost all life processes. In particular, protein phosphorylation regulates the development of major diseases such as tumors, neurodegenerative diseases, and diabetes. For example, excessive phosphorylation of Tau protein can cause neurofibrillary tangles, leading to Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!