Background: Identifying ischemic or hemorrhagic strokes clinically may help in situations where neuroimaging is unavailable to provide primary-care prior to referring to stroke-ready facility. Stroke classification-based solely on clinical scores faces two unresolved issues. One pertains to overestimation of score performance, while other is biased performance due to class-imbalance inherent in stroke datasets. After correcting the issues using Machine Learning theory, we quantitatively compared existing scores to study the capabilities of clinical attributes for stroke classification.

Methods: We systematically searched PubMed, ERIC, ScienceDirect, and IEEE-Xplore from 2001 to 2021 for studies that validated the Siriraj, Guys Hospital/Allen, Greek, and Besson scores for stroke classification. From included studies we extracted the reported cross-tabulation to identify and correct the above listed issues for an accurate comparative analysis of the performance of clinical scores.

Results: A total of 21 studies were included. Comparative analysis demonstrates Siriraj Score outperforms others. For Siriraj Score the reported sensitivity range (Ischemic Stroke-diagnosis) 43-97% (Median = 78% [IQR 65-88%]) is significantly higher than our calculated range 40-90% (Median = 70% [IQR 57-73%]), also the reported sensitivity range (Hemorrhagic Stroke-diagnosis) 50-95% (Median = 71% [IQR 64-82%]) is higher than our calculated range 34-86% (Median = 59% [IQR 50-79%]) which indicates overestimation of performance by the included studies. Guys Hospital/Allen and Greek Scores show similar trends. Recommended weighted-accuracy metric provides better estimate of the performance.

Conclusion: We demonstrate that clinical attributes have a potential for stroke classification, however the performance of all scores varies across demographics, indicating the need to fine-tune scores for different demographics. To improve this variability, we suggest creating global data pool with statistically significant attributes. Machine Learning classifiers trained over such dataset may perform better and generalise at scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106638DOI Listing

Publication Analysis

Top Keywords

machine learning
12
clinical scores
8
ischemic hemorrhagic
8
clinical attributes
8
guys hospital/allen
8
hospital/allen greek
8
stroke classification
8
included studies
8
comparative analysis
8
siriraj score
8

Similar Publications

A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k).

View Article and Find Full Text PDF

Background: The treatment effects are heterogenous across patients due to the differences in their microbiomes, which in turn implies that we can enhance the treatment effect by manipulating the patient's microbiome profile. Then, the coadministration of microbiome-based dietary supplements/therapeutics along with the primary treatment has been the subject of intensive investigation. However, for this, we first need to comprehend which microbes help (or prevent) the treatment to cure the patient's disease.

View Article and Find Full Text PDF

Background: Postoperative fever (POF) is a common occurrence in patients undergoing major surgery, presenting challenges and burdens for both patients and surgeons yet. This study endeavors to examine the incidence, identify risk factors, and establish a machine learning-based predictive model for POF following surgery of oral cancer.

Methods: A total of seven hundred and twenty-seven consecutive patients undergoing radical resection of oral cancer were retrospectively investigated.

View Article and Find Full Text PDF

Background: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In clinical practice, the diagnosis of ICP is predominantly based on the presence of pruritus in pregnant women and elevated serum total bile acid. However, this approach may result in missed or delayed diagnoses.

View Article and Find Full Text PDF

Background: Creatinine-based estimated glomerular filtration rate (eGFR) equations are widely used in clinical practice but exhibit inherent limitations. On the other side, measuring GFR is time consuming and not available in routine clinical practice. We developed and validated machine learning models to assess the trustworthiness (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!