Antibiotics and antibiotic resistance genes (ARGs) in sewage sludge can cause high ecotoxicological risks in the environment and public health concerns. The aims of this study were to establish enzymatic integrated in-situ advanced anaerobic digestion (AAD) by adding cellulase and papain as well as the two enzymes combined with zero valent iron (ZVI) directly into the anaerobic digesters to explore the removal of antibiotics and ARGs under the mesophilic condition (35 °C). The methane production potential during in-situ AAD was effectively improved. Papain and cellulase at 30 mg/gTSS were most effective in improving antibiotic removal. The removal of sulfamerazine (SMZ) and sulfadiazine (SMR) could reach 89.10 % and 71.75 %. Combined enzymes with ZVI also enhanced the removal of all target antibiotics, especially roxithromycin (ROX), SMZ and SMR most significantly. Except for sul1, tetA and tetB, the removal of ARGs by papain reached 6.33 %-82.15 %. The addition of cellulase effectively improved tetA removal. The combination of biological enzymes further enhanced the removal of qnrS and ermX. The tetG, tetB, sul3, ermX, ermT, qnrS, and aac(6')-IB-CR by combined enzymes with ZVI could even not be detected after digestion. Addition of papain, cellulase, and ZVI caused variations in the dominant bacteria. All target antibiotics presented significant positive correlations with the genera norank_f__Bacteroidetes_vadinHA17, norank_f__norank_o__SJA-15, norank_f__norank_o__Aminicenantales. Redundancy analysis showed archaea Methanosaeta and Candidatus_ Methanoacidiosum genera greatly contributed to antibiotics removal with the combination of enzymes and ZVI. Co-occurrence network analysis indicated the removal of ARGs was mainly based on the changes of existence of host bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2022.07.020DOI Listing

Publication Analysis

Top Keywords

enzymes zvi
12
removal
10
enzymatic integrated
8
integrated in-situ
8
in-situ advanced
8
advanced anaerobic
8
anaerobic digestion
8
sewage sludge
8
removal antibiotics
8
antibiotics antibiotic
8

Similar Publications

Anaerobic digestion is a sustainable technology for methane (CH) production from organic waste and wastewater. However, its performance is frequently hindered by excessive acidification in readily acidified substrates, such as starch wastewater. Oyster shell (OS), a natural alkaline material, effectively regulates pH and enhances CH production.

View Article and Find Full Text PDF

Escherichia coli producing OXA-48-like carbapenemases (OXA-EC) is considered a high-risk pathogen spread primarily in the community in low- and middle-income countries and nosocomially in high-income countries. We investigated the emergence and spread of OXA-EC in Israel, a high-income country with strong carbapenemase-directed infection control in healthcare institutions, by conducting a population-based study using data and isolates from the national surveillance system. A total of 3,510 incident cases of OXA-EC occurred during 2007-2023.

View Article and Find Full Text PDF

Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor.

View Article and Find Full Text PDF

The biogenetic sulfidation of zero-valent iron (BS-ZVI) by sulfate-reducing bacteria (SRB) has been demonstrated to enhance the reactivity of ZVI. However, long-term performance of BS-ZVI and related mechanism were still unknown. Therefore, columns containing sponge iron and SRB are built to prepare BS-ZVI in-situ and study its long-term performance.

View Article and Find Full Text PDF

Synergetic effect of pyrrhotite and zero-valent iron on Hg(Ⅱ) removal in constructed wetland: Mechanisms of electron transfer and microbial reaction.

J Hazard Mater

December 2024

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Article Synopsis
  • Effective mercury (Hg) removal from wastewater is crucial due to its toxicity, particularly in the form of methylmercury (MeHg), and this study explores enhanced techniques using constructed wetlands (CWs).
  • Combining zero-valent iron (ZVI) with pyrrhotite significantly improved the removal rates of total Hg, dissolved Hg, and particulate Hg by approximately 21.68%, 13.02%, and 22.27%, respectively, compared to using ZVI or pyrrhotite alone.
  • The synergy between ZVI and pyrrhotite boosts iron corrosion, facilitates Hg reduction, and enhances the generation of essential enzymes, making it a promising method for efficient Hg treatment in wastewater systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!