Optimal allocation and operation of sewer monitoring sites for wastewater-based disease surveillance: A methodological proposal.

J Environ Manage

Department of Civil and Environmental Engineering, Dongguk University-Seoul, 30, Pildong-ro 1gil, Jung-gu, Seoul, 04620, Republic of Korea. Electronic address:

Published: October 2022

Wastewater-based epidemiology (WBE) is drawing increasing attention as a promising tool for an early warning of emerging infectious diseases such as COVID-19. This study demonstrated the utility of a spatial bisection method (SBM) and a global optimization algorithm (i.e., genetic algorithm, GA), to support better designing and operating a WBE program for disease surveillance and source identification. The performances of SBM and GA were compared in determining the optimal locations of sewer monitoring manholes to minimize the difference among the effective spatial monitoring scales of the selected manholes. While GA was more flexible in determining the spatial resolution of the monitoring areas, SBM allows stepwise selection of optimal sampling manholes with equiareal subcatchments and lowers computational cost. Upon detecting disease outbreaks at a regular sewer monitoring site, additional manholes within the catchment can be selected and monitored to identify source areas with a required spatial resolution. SBM offered an efficient method for rapidly searching for the optimal locations of additional sampling manholes to identify the source areas. This study provides strategic and technical elements of WBE including sampling site selection with required spatial resolution and a source identification method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342910PMC
http://dx.doi.org/10.1016/j.jenvman.2022.115806DOI Listing

Publication Analysis

Top Keywords

sewer monitoring
12
spatial resolution
12
disease surveillance
8
source identification
8
optimal locations
8
sampling manholes
8
identify source
8
source areas
8
required spatial
8
monitoring
5

Similar Publications

A low-cost soft sensor for sewer flow monitoring - Learning from water level measurements in manholes.

Water Res

January 2025

School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China. Electronic address:

Flow meters are commonly used in manholes to monitor the flow rate for sewer operation and management. However, the large-scale deployment of flow meters in a sewer system is cost-prohibitive due to their high costs and the need for frequent maintenance. This paper proposes a soft sensor that estimates flow rates based on water level measurements in a manhole.

View Article and Find Full Text PDF

Localised wastewater SARS-CoV-2 levels linked to COVID-19 cases: A long-term multisite study in England.

Sci Total Environ

January 2025

School of Environmental Sciences, UEA, NR4 7TJ, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK. Electronic address:

Wastewater-based surveillance (WBS) can monitor for the presence of human health pathogens in the population. During COVID-19, WBS was widely used to determine wastewater SARS-CoV-2 RNA concentration (concentrations) providing information on community COVID-19 cases (cases). However, studies examining the relationship between concentrations and cases tend to be localised or focussed on small-scale institutional settings.

View Article and Find Full Text PDF

With the beginning of the COVID-19 pandemic, wastewater-based epidemiology (WBE), which according to Larsen et al. (2021), describes the science of linking pathogens and chemicals found in wastewater to population-level health, received an enormous boost worldwide. The basic procedure in WBE is to analyse pathogen concentrations and to relate these measurements to cases from clinical data.

View Article and Find Full Text PDF

Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.

View Article and Find Full Text PDF

Factors affecting mass inflow of quaternary ammonium compounds into Japanese sewage treatment plants.

J Environ Manage

January 2025

Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.

Quaternary ammonium compounds (QACs), ecotoxic organic chemicals linked to multidrug resistance, are being used increasingly, for example to prevent the transmission of infections such as covid-19, in households, hospitals, and industry. To understand the locations, fluctuations, and fractions of QACs entering sewers, we monitored 14 QACs (benzalkonium chloride [BAC]-C8, C10, C12, C14, C16, and C18; dialkyldimethylammonium chloride [DDAC]-C8, C10, and C12; alkyltrimethylammonium chloride [ATAC]-C12, C16, and C18; benzethonium chloride; and cetylpyridinium chloride), and a disinfectant (chlorhexidine) in influent at four Japanese sewage treatment plants (STPs) five times throughout a year. Mass inflows were relatively stable throughout the year, indicating that the recent seasonal covid-19 epidemic did not greatly influence them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!