The morphology transition from primary to hierarchical adsorption-type microporous domains of amphiphilic block copolymer (BCP) honeycomb-structured films is demonstrated by a facile swollen based breath figure (BF) method. The characteristic parameters of poly(4-vinylpyridine)-block-polystyrene (P4VP-b-PS) hierarchical micro- and submicroporous films can be controlled by changing the length of segments or subsequent swelling conditions. A plausible mechanism is demonstrated in this research. A typical amphiphilic BCP with very low volume content of hydrophilic blocks (f ≤ 0.050) can efficiently stabilize water droplets and inherently assist in the formation of morphology transition. This BCP film can be used for Cr(VI) removal from wastewater, which additionally has enormous potential application in the field of novel optical devices, soft lithography, size-selective separation, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200403 | DOI Listing |
J Mater Chem B
January 2025
National Engineering Research center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
Molecules
November 2024
"Victor Babes" National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania.
Hydrogels are interesting materials as delivery systems of various therapeutic agents, mainly due to the water-swollen network and the localized and sustained drug release. Herein, single-component starch-based hydrogels with enhanced degradation rates were produced by applying a facile synthesis and proposed for a novel delivery system of therapeutic molecules. Starch was oxidized with sodium periodate in water and mild conditions to generate aldehyde derivatives that, after a freeze-thaw procedure, were allowed to compact and stable hydrogels.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Materials and Life Science, Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan.
Bacterial infections on material surfaces are a serious public health concern worldwide. Although poly(vinyl alcohol) (PVA)-based materials have great potential as medical devices, they lack antibacterial properties on their surfaces and pose bacterial infection risks during implantation surgery. Copolymers containing antibacterial [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) units were used to modify the surfaces of chemically cross-linked water-insoluble PVA-based microfibers.
View Article and Find Full Text PDFACS Omega
October 2024
NTT Basic Research Laboratories and Bio-Medical Informatics Research Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
Composites of hydrogels and metals are gaining interest because of each material's unique properties. However, the stable adhesion of metals on hydrogels is challenging due to the mechanical mismatch at the soft-hard interface and the liquidity of the water components in hydrogels. We propose a facile physical-adhesion method that involves the dehydration process of hydrogels to transfer metals from a glass substrate.
View Article and Find Full Text PDFACS Biomater Sci Eng
November 2024
Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada.
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!