Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nitrogenase employs a sophisticated electron transfer system and a Mo-Fe-S-C cofactor, designated the M-cluster [(cit)MoFe S C]), to reduce atmospheric N to bioaccessible NH . Previously, we have shown that the cofactor-free form of nitrogenase can be repurposed as a protein scaffold for the incorporation of a synthetic Fe-S cluster [Fe S (SEt) ] . Here, we demonstrate the utility of an asymmetric Mo-Fe-S cluster [Cp*MoFe S (SH)] as an alternative artificial cofactor upon incorporation into the cofactor-free nitrogenase scaffold. The resultant semi-artificial enzyme catalytically reduces C H to C H , and CN into short-chain hydrocarbons, yet it is clearly distinct in activity from its [Fe S (SEt) ] -reconstituted counterpart, pointing to the possibility to employ molecular design and cluster synthesis strategies to further develop semi-artificial or artificial systems with desired catalytic activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547968 | PMC |
http://dx.doi.org/10.1002/cbic.202200384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!