Developing artificial microsystems based on liquid-liquid phase separation (LLPS) to mimic cellular dynamic compartmentalization has gained increasing attention. However, limitations including complicated components and laborious fabrication techniques have hindered their development. Herein, we describe a new single-component dynamic compartmentalization system using peptide-oligonucleotide conjugates (POCs) produced from short elastin-like polypeptides (sELPs) and oligonucleotides (ONs), which can perform thermoreversible phase transition between a nanovesicle and a microdroplet. The phase transition of sELP-ONs is thoroughly investigated, of which the transition temperature can be controlled by concentration, length of sELPs and ONs, base sequences, and salt. Moreover, the sELP-ON microcompartment can enrich a variety of functional molecules including small molecules, polysaccharides, proteins, and nucleic acids. Two sELP-ON compartments are used as nano- and microreactors for enzymatic reactions, separately, in which chemical activities are successfully regulated under different-scaled confinement effects, demonstrating their broad potential application in matter exchange and artificial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c05268DOI Listing

Publication Analysis

Top Keywords

dynamic compartmentalization
12
phase transition
12
peptide-oligonucleotide conjugates
8
compartmentalization peptide-oligonucleotide
4
conjugates reversible
4
reversible nanovesicle-microdroplet
4
phase
4
nanovesicle-microdroplet phase
4
transition
4
transition behaviors
4

Similar Publications

Fractional modelling of COVID-19 transmission incorporating asymptomatic and super-spreader individuals.

Math Biosci

January 2025

Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, Aveiro 3810-193, Portugal. Electronic address:

The COVID-19 pandemic has presented unprecedented challenges worldwide, necessitating effective modelling approaches to understand and control its transmission dynamics. In this study, we propose a novel approach that integrates asymptomatic and super-spreader individuals in a single compartmental model. We highlight the advantages of utilizing incommensurate fractional order derivatives in ordinary differential equations, including increased flexibility in capturing disease dynamics and refined memory effects in the transmission process.

View Article and Find Full Text PDF

Background: In-person interaction offers invaluable benefits to people. To guarantee safe in-person activities during a COVID-19 outbreak, effective identification of infectious individuals is essential. In this study, we aim to analyze the impact of screening with antigen tests in schools and workplaces on identifying COVID-19 infections.

View Article and Find Full Text PDF

Linear compartmental models are often employed to capture the change in cell type composition of cancer cell populations. Yet, these populations usually grow in a nonlinear fashion. This begs the question of how linear compartmental models can successfully describe the dynamics of cell types.

View Article and Find Full Text PDF

The open nature of Wireless Sensor Networks (WSNs) renders them an easy target to malicious code propagation, posing a significant and persistent threat to their security. Various mathematical models have been studied in recent literature for understanding the dynamics and control of the propagation of malicious codes in WSNs. However, due to the inherent randomness and uncertainty present in WSNs, stochastic modeling approach is essential for a comprehensive understanding of the propagation of malicious codes in WSNs.

View Article and Find Full Text PDF

Epidemiological models to estimate the burden of snakebite envenoming: A systematic review.

Trop Med Int Health

January 2025

Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

Background: Epidemiological modelling studies in snakebite envenoming research are evolving. Their techniques can be essential in filling the knowledge gap needed to attain the World Health Organization's (WHO) goal of halving the burden of snakebite envenoming by complementing the current data scarcity. Hence, there is a need for a systematic review to summarise epidemiological models used in estimating the burden of snakebite envenoming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!