Recent efforts to develop durable high-performance platinum-group metal (PGM)-free oxygen reduction reaction (ORR) electrocatalysts have focused on Fe- and Co-based molecular and pyrolyzed catalysts. While Mn-based catalysts have advantages of lower toxicity and higher durability, their activity has been generally poor. Nevertheless, several examples of high-performance Mn-based catalysts have been reported. Thus, it is necessary to understand why Mn-based materials much more rarely show high catalytic ORR performance and to determine the factors that can lead to the achievement of such high performance in these rare cases. We have studied the effects of the changes in the macrocycle structure, axial ligand, distance between the active sites, interactions with the dopant N atoms and the presence of an extended carbon network on the ORR catalysis of various Mn-, Fe-, and Co-based systems through the comparison of the adsorption energies of the ORR intermediates. We find that the sensitivity to the local environment changes is the largest for Mn and is the smallest for Co, with Fe between Mn and Co. Our results showed that the strong binding of OH by Mn and the strong sensitivity of the Mn to the modification of its environment necessitate a precise combination of local environment changes to achieve a high onset potential (V ) in Mn-based catalysts. By contrast, the weaker binding of OH by Fe and Co and their weaker sensitivity to local environment changes lead to a wide variety of local environments with favorable catalytic activity (V >0.7 V) for Co- and Fe-based systems. This explains the scarcity of reported Mn-based pyrolyzed catalysts and suggests that precise material synthesis and engineering of the active site can achieve high-performance Mn-based ORR electrocatalysts with high activity and durability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9804284PMC
http://dx.doi.org/10.1002/cssc.202200795DOI Listing

Publication Analysis

Top Keywords

mn-based catalysts
12
local environment
12
environment changes
12
high performance
8
oxygen reduction
8
orr electrocatalysts
8
fe- co-based
8
pyrolyzed catalysts
8
high-performance mn-based
8
sensitivity local
8

Similar Publications

MnCoO spinel activates peroxymonosulfate for highly effective bisphenol A degradation with ultralow catalyst and persulfate usage.

J Hazard Mater

December 2024

Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. Electronic address:

Persulfates-based advanced oxidation processes are highly efficient in degrading refractory organic contaminants in wastewater. However, their practical application is often limited by the extensive consumption of catalysts and oxidants. Therefore, constructing catalysts with abundant and efficient reaction interfaces is essential for improving the efficiency of persulfate activation.

View Article and Find Full Text PDF

Second-Shell Coordination Environment Modulation for MnN Active Sites by Oxygen Doping to Boost Oxygen Reduction Performance.

Small

December 2024

Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.

As a category of transition metal-nitrogen-carbon (M-N-C) catalysts, Mn-based single-atom catalysts (SACs) are considered as promising non-precious metal catalysts for stable oxygen reduction reaction (ORR) due to their Fenton-inactive character (versus Fe) and more abundant earth reserves (versus Ni, Co). However, their ORR activity is unsatisfactory. Besides, the structure-activity relationship via tuning the coordination environment of the second coordination shell for transition metal single sites is still elusive.

View Article and Find Full Text PDF

Modulating NH oxidation and inhibiting sulfate deposition to improve NH-SCR denitration performance by controlling Mn/Nb ratio over MnNbTiO (a = 0.6-0.9) catalysts.

J Hazard Mater

November 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials, Heilongjiang University, No.74 Xuefu Road, Harbin 150080, PR China. Electronic address:

The MnNbTiO (a = 0.6-0.9) catalysts for NH selective catalytic reduction denitration were prepared using the co-precipitation method.

View Article and Find Full Text PDF

The rational design and fabrication of the active sites of single-atom catalysts (SACs) remains the main breakthrough for efficient electrocatalytic oxygen reduction reaction (ORR). Although metal-nitrogen-carbon (M-N-C) materials have been reported to exhibit good ORR performance, the M-N bond is prone to oxidation and subsequent destruction in Fenton-like reactions. Here, we report a nitrogen-free Mn-based SAC (Mn-SOG-600) anchored on a nitrogen-free graphene substrate, where manganese is bound to four oxygen atoms and one sulfur atom across two different coordination shells.

View Article and Find Full Text PDF

Manganese octahedral molecular sieves with an α-MnO crystal structure (OMS-2) and their related materials have attracted significant attention for the selective catalytic reduction of NO using NH (NH-SCR) at low temperatures. Further lowering their operating temperature should be an effective method to develop an environmentally friendly de-NO system; however, their catalytic activity at low temperatures, especially below 100 °C, remains poor. This study describes a post-synthetic approach to develop Mn-based catalysts superior to those in the literature that operate at ultralow temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!