Language function in the brain, once thought to be highly localized, is now appreciated as relying on a connected but distributed network. The semantic system is of particular interest in the language domain because of its hypothesized integration of information across multiple cortical regions. Previous work in healthy individuals has focused on group-level functional connectivity (FC) analyses of the semantic system, which may obscure interindividual differences driving variance in performance. These studies also overlook the contributions of white matter networks to semantic function. Here, we identified semantic network nodes at the individual level with a semantic decision fMRI task in 53 typically aging adults, characterized network organization using structural connectivity (SC), and quantified the segregation and integration of the network using FC. Hub regions were identified in left inferior frontal gyrus. The individualized semantic network was composed of three interacting modules: (1) default-mode module characterized by bilateral medial prefrontal and posterior cingulate regions and also including right-hemisphere homotopes of language regions; (2) left frontal module extending dorsally from inferior frontal gyrus to pre-motor area; and (3) left temporoparietal module extending from temporal pole to inferior parietal lobule. FC within Module3 and integration of the entire network related to a semantic verbal fluency task, but not a matched phonological task. These results support and extend the tri-network semantic model (Xu in Front Psychol 8: 1538 1538, 2017) and the controlled semantic cognition model (Chiou in Cortex 103: 100 116, 2018) of semantic function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-022-02544-4 | DOI Listing |
Int J Neural Syst
January 2025
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.
Visual semantic decoding aims to extract perceived semantic information from the visual responses of the human brain and convert it into interpretable semantic labels. Although significant progress has been made in semantic decoding across individual visual cortices, studies on the semantic decoding of the ventral and dorsal cortical visual pathways remain limited. This study proposed a graph neural network (GNN)-based semantic decoding model on a natural scene dataset (NSD) to investigate the decoding differences between the dorsal and ventral pathways in process various parts of speech, including verbs, nouns, and adjectives.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Innovation and Design, City University of Macau, Macau, China.
The city's rapid development would lead to irreversible changes in architectural heritage. As one of the ways to promote sustainable development, world heritage tourism has opened up a new perspective for the protection, inheritance and development of architectural heritage. Taking the study of architectural heritage in the Historic Centre of Macau as an example, employing eye-tracking experiment and semantic differential method (SD method) to explore the relationship between tourists' perceptions of visual elements of architectural heritage, positive emotions, and behavioral intentions.
View Article and Find Full Text PDFSci Data
January 2025
Jozef Stefan Institute, Ljubljana, 1000, Slovenia.
Due to growing population and technological advances, global electricity consumption is increasing. Although CO emissions are projected to plateau or slightly decrease by 2025 due to the adoption of clean energy sources, they are still not decreasing enough to mitigate climate change. The residential sector makes up 25% of global electricity consumption and has potential to improve efficiency and reduce CO footprint without sacrificing comfort.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo FI-00076, Finland.
Our visual system enables us to effortlessly navigate and recognize real-world visual environments. Functional magnetic resonance imaging (fMRI) studies suggest a network of scene-responsive cortical visual areas, but much less is known about the temporal order in which different scene properties are analysed by the human visual system. In this study, we selected a set of 36 full-colour natural scenes that varied in spatial structure and semantic content that our male and female human participants viewed both in 2D and 3D while we recorded magnetoencephalography (MEG) data.
View Article and Find Full Text PDFNeuroimage
January 2025
Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:
Previous research has revealed that the insula, pallidum, thalamus, hippocampus, middle frontal gyrus, and supplementary motor area are activated during odor memory and that the performance of olfactory working memory is affected by the verbalization of odors. However, the neural mechanisms underlying olfactory working memory and the role of verbalization in olfactory working memory are not fully understood. Twenty-nine participants were enrolled in a study to complete olfactory and visual n-back tasks using high- and low-verbalizability stimuli while undergoing fMRI imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!