Background: Endothelial dysfunction is a critical component in the pathogenesis of cardiovascular diseases and is closely associated with nitric oxide (NO) levels and oxidative stress. Here, we report on novel findings linking endothelial expression of CD70 (also known as CD27 ligand) with alterations in NO and reactive oxygen species.
Methods: CD70 expression was genetically manipulated in human aortic and pulmonary artery endothelial cells. Intracellular NO and hydrogen peroxide (HO) were measured using genetically encoded biosensors, and cellular phenotypes were assessed.
Results: An unbiased phenome-wide association study demonstrated that polymorphisms in CD70 associate with vascular phenotypes. Endothelial cells treated with CD70-directed short-interfering RNA demonstrated impaired wound closure, decreased agonist-stimulated NO levels, and reduced eNOS (endothelial nitric oxide synthase) protein. These changes were accompanied by reduced NO bioactivity, increased 3-nitrotyrosine levels, and a decrease in the eNOS binding partner heat shock protein 90. Following treatment with the thioredoxin inhibitor auranofin or with agonist histamine, intracellular HO levels increased up to 80% in the cytosol, plasmalemmal caveolae, and mitochondria. There was increased expression of NADPH oxidase 1 complex and gp91phox; expression of copper/zinc and manganese superoxide dismutases was also elevated. CD70 knockdown reduced levels of the HO scavenger catalase; by contrast, glutathione peroxidase 1 expression and activity were increased. CD70 overexpression enhanced endothelial wound closure, increased NO levels, and attenuated the reduction in eNOS mRNA induced by TNFα.
Conclusions: Taken together, these data establish CD70 as a novel regulatory protein in endothelial NO and reactive oxygen species homeostasis, with implications for human vascular disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394499 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.122.317866 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 24227, 20006, Saudi Arabia.
Introduction: Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.
Methods: A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment.
EClinicalMedicine
January 2025
Department of Cardiology, Hospital Universitario de La Princesa, IIS-IP, CIBER-CV, Universidad Autónoma Madrid, Madrid, Spain.
Phytomedicine
January 2025
Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.
View Article and Find Full Text PDFJ Microbiol Biotechnol
January 2025
Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University, Chungnam 31460, Republic of Korea.
is a lactic acid bacteria found in fermented products. In our previous study, was isolated from flowers, and its acid tolerance and antibacterial properties were thoroughly investigated. This study focuses on the inhibition of melanin synthesis and inflammation of exosomes derived from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!