The diagnosis and treatment of patients in the healthcare industry are greatly aided by data analytics. Massive amounts of data should be handled using machine learning approaches to provide tools for prediction and categorization to support practitioner decision-making. Based on the kind of tumor, disorders like breast cancer can be categorized. The difficulties associated with evaluating vast amounts of data should be overcome by discovering an efficient method for categorization. Based on the Bayesian method, we analyzed the influence of clinic pathological indicators on the prognosis and survival rate of breast cancer patients and compared the local resection value directly using the lymph node ratio (LNR) and the overall value using the LNR differences in effect between estimates. Logistic regression was used to estimate the overall LNR of patients. After that, a probabilistic Bayesian classifier-based dynamic regression model for prognosis analysis is built to capture the dynamic effect of multiple clinic pathological markers on patient prognosis. The dynamic regression model employing the total estimated value of LNR had the best fitting impact on the data, according to the simulation findings. In comparison to other models, this model has the greatest overall survival forecast accuracy. These prognostic techniques shed light on the nodal survival and status particular to the patient. Additionally, the framework is flexible and may be used with various cancer types and datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9343185PMC
http://dx.doi.org/10.1155/2022/1859222DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer patients
8
patients probabilistic
8
probabilistic bayesian
8
amounts data
8
clinic pathological
8
dynamic regression
8
regression model
8
prognostic diagnosis
4
diagnosis breast
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!