Algorithm for appearance simulation of plant diseases based on symptom classification.

Front Plant Sci

School of Information Science and Technology, Beijing Forestry University, Beijing, China.

Published: July 2022

Plant disease visualization simulation belongs to an important research area at the intersection of computer application technology and plant pathology. However, due to the variety of plant diseases and their complex causes, how to achieve realistic, flexible, and universal plant disease simulation is still a problem to be explored in depth. Based on the principles of plant disease prediction, a time-varying generic model of diseases affected by common environmental factors was established, and interactive environmental parameters such as temperature, humidity, and time were set to express the plant disease spread and color change processes through a unified calculation. Using the apparent symptoms as the basis for plant disease classification, simulation algorithms for different symptom types were propose. The composition of disease spots was deconstructed from a computer simulation perspective, and the simulation of plant diseases with symptoms such as discoloration, powdery mildew, ring pattern, rust spot, and scatter was realized based on the combined application of visualization techniques such as image processing, noise optimization and texture synthesis. To verify the effectiveness of the algorithm, a simulation similarity test method based on deep learning was proposed to test the similarity with the recognition accuracy of symptom types, and the overall accuracy reaches 87%. The experimental results showed that the algorithm in this paper can realistically and effectively simulate five common plant disease forms. It provided a useful reference for the popularization of plant disease knowledge and visualization teaching, and also had certain research value and application value in the fields of film and television advertising, games, and entertainment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340076PMC
http://dx.doi.org/10.3389/fpls.2022.935157DOI Listing

Publication Analysis

Top Keywords

plant disease
28
plant diseases
12
plant
11
simulation plant
8
disease
8
symptom types
8
simulation
7
algorithm appearance
4
appearance simulation
4
diseases
4

Similar Publications

Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits.

View Article and Find Full Text PDF

Food spoilage causes significant economic losses and endangers human health. Developing novel antimicrobial agents and preservatives is urgently needed for anti-foodborne diseases and improving food storage. Zhen Zhu Cai () species are well-known edible plants among the East Asian populace that clear heat and anti-aging.

View Article and Find Full Text PDF

Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.

View Article and Find Full Text PDF

Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold.

iScience

January 2025

Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.

This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process.

View Article and Find Full Text PDF

Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability.

Plant Cell Environ

January 2025

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.

Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!