Hyposmia is one of the prodromal symptoms of Parkinson's disease (PD) and a red flag in clinical diagnosis. Neuropathologically, this sign correlates with α-synuclein involvement in the anterior olfactory nucleus (AON). Neurodegeneration, microgliosis, and astrogliosis in AON are poorly studied, and bulbar AON is the focus of these studies with contradictory results. Additionally, male sex is a risk marker for developing PD, but sexual dimorphism of neural and glial populations in the AON has rarely been considered. The aim of this study was to analyze the density of NeuN, Iba-1, GFAP, and Lewy bodies (LBs), as well as the relationship of these cell type markers with pathology along the rostrocaudal axis of the AON (bulbar, retrobulbar, cortical anterior, and posterior divisions). Cavalieri, optical fractionator, and area fraction fractionator stereological approaches were used for the volume, cell populations and LBs densities, area fraction, and percentage of overlap. Iba-1 and α-syn intensities were measured using ImageJ. In non-PD (NPD) cases, the volume was lower in the AON at the extremes of the rostrocaudal axis than in the intermediate divisions. Cortical anterior AON volume decreased in PD compared with NPD cases. NeuN density decreased rostrocaudally in AON portions in NPD and PD cases. This occurred similarly in Iba-1 but only in PD samples. Iba-1 intensity significantly increased in bulbar AON between PD and NPD. No changes were found in astrocytes. Eight percent of NeuN, 0.1% of Iba-1, and 0.1% of GFAP areas overlapped with LBs area along the AON portions. The data indicate that bulbar AON, which is the most rostral portion in this axis, could play a major role in the pathology. This could be related to the larger area occupied by LBs in these divisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9339613PMC
http://dx.doi.org/10.3389/fnana.2022.907373DOI Listing

Publication Analysis

Top Keywords

rostrocaudal axis
12
bulbar aon
12
npd cases
12
aon
11
anterior olfactory
8
olfactory nucleus
8
parkinson's disease
8
cortical anterior
8
area fraction
8
aon portions
8

Similar Publications

Developing populations of connected neurons often share spatial and/or temporal features that anticipate their assembly. A unifying spatiotemporal motif might link sensory, central, and motor populations that comprise an entire circuit. In the sensorimotor reflex circuit that stabilizes vertebrate gaze, central and motor partners are paired in time (birthdate) and space (dorso-ventral).

View Article and Find Full Text PDF

Introduction: Different functional domains can be identified along the longitudinal axis of the mammalian hippocampus. We have recently hypothesized that a similar functional gradient may exist along the longitudinal axis of the avian hippocampal formation (HF) as well. If the 2 gradients are homologous, we would expect the caudal HF to be more responsive to acute stress than the rostral HF.

View Article and Find Full Text PDF

Organoids generating major cortical cell types in distinct compartments are used to study cortical development, evolution and disorders. However, the lack of morphogen gradients imparting cortical positional information and topography in current systems hinders the investigation of complex phenotypes. Here, we engineer human cortical assembloids by fusing an organizer-like structure expressing fibroblast growth factor 8 (FGF8) with an elongated organoid to enable the controlled modulation of FGF8 signaling along the longitudinal organoid axis.

View Article and Find Full Text PDF

We have investigated the hippocampal connectivity of the marmoset presubiculum (PreS) and reported that major connections of PreS in the rat were conserved in the marmoset. Moreover, our results indicated the presence of several additional projections that were almost absent in the rat brain, but abundant in the marmoset, such as direct projections from CA1 to PreS. However, little is known about the connectivity between the frontal brain regions and PreS or hippocampal formation.

View Article and Find Full Text PDF

The functional organization of the frontal lobe is a source of debate, focusing on broad functional subdivisions, large-scale networks, or local refined specificities. Multiple neurocognitive models have tried to explain how functional interactions between cingulate and lateral frontal regions contribute to decision making and cognitive control, but their neuroanatomical bases remain unclear. We provide a detailed description of the functional connectivity between cingulate and lateral frontal regions using resting-state functional MRI in rhesus macaques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!