Meta-Analysis of qPCR for Bovine Respiratory Disease Based on MIQE Guidelines.

Front Mol Biosci

School of Agricultural, Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia.

Published: July 2022

Qualitative and quantitative PCR-based tests are widely used in both diagnostics and research to assess the prevalence of disease-causing pathogens in veterinary medicine. The efficacy of these tests, usually measured in terms of sensitivity and specificity, is critical in confirming or excluding a clinical diagnosis. We undertook a meta-analysis to assess the inherent value of published PCR diagnostic approaches used to confirm and quantify bacteria and viruses associated with bovine respiratory disease (BRD) in cattle. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A thorough search of nine electronic databases (Web of Science, EBSCOhost, Cambridge journals online, ProQuest, PubMed, Sage journals online, ScienceDirect, Wiley online library and MEDLINE) was undertaken to find studies that had reported on the use of PCR and/or qPCR for the detection and/or quantification of BRD associated organisms. All studies meeting the inclusion criteria for reporting quantitative PCR for identification of BRD associated microorganisms were included in the analysis. Studies were then assessed on the applications of the Minimum Information for Publication of Quantitative Real-Time PCR Experiment (MIQE) and PCR primer/probe sequences were extracted and tested for specificity using a high level of stringency. Fourteen full-text articles were included in this study. Of these, 79% of the analysed articles did not report the application of the MIQE guidelines in their study. High stringency testing of 144 previously published PCR primer/probe sequences found many to have questionable specificity. This review identified a high occurrence of primer/probe sequences with a variable specificity such that this may have implications for the accuracy of reporting. Although this analysis was only applied to one specific disease state, identification of animals suspected to be suffering from bovine respiratory disease, there appears to be more broadly a need for veterinary diagnostic studies to adopt international best practice for reporting of quantitative PCR diagnostic data to be both accurate and comparable between studies and methodologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340069PMC
http://dx.doi.org/10.3389/fmolb.2022.902401DOI Listing

Publication Analysis

Top Keywords

bovine respiratory
12
respiratory disease
12
primer/probe sequences
12
miqe guidelines
8
published pcr
8
pcr diagnostic
8
journals online
8
brd associated
8
reporting quantitative
8
quantitative pcr
8

Similar Publications

Bovine viral diarrhea virus (BVDV) is an important pathogen affecting dairy cattle all over the world by causing significant economic losses due to reproductive and respiratory problems, immunosuppressive effects, increased risk of morbidity, and calf mortality. A cross-sectional study was conducted from February 2021 to August 2021 to determine the seroprevalence of bovine viral diarrhea (BVD) and identify risk factors associated with its occurrence in and around Nekemte Town of Ethiopia. Blood samples were collected from 305 dairy cattle of 41 herds by using cluster-sampling method.

View Article and Find Full Text PDF

Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in Macaques.

Nature

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.

Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.

View Article and Find Full Text PDF

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF

Maintaining an optimal indoor thermal environment is crucial for enhancing the welfare and productivity of livestock in intensive breeding farms. This paper investigated the application of a combined geothermal heat pump with a precision air supply (GHP-PAS) system for cooling dairy cows on a dairy farm. The effectiveness of the GHP-PAS system in mitigating heat stress in lactating dairy cattle, along with its energy performance and local cooling efficiency in the free stalls were evaluated.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!