In March 2018, the US Food and Drug Administration (FDA), US Centers for Disease Control and Prevention, California Department of Public Health, Los Angeles County Department of Public Health and Pennsylvania Department of Health initiated an investigation of an outbreak of complex () infections. Sixty infections were identified in California, New Jersey, Pennsylvania, Maine, Nevada and Ohio. The infections were linked to a no-rinse cleansing foam product (NRCFP), produced by Manufacturer A, used for skin care of patients in healthcare settings. FDA inspected Manufacturer A's production facility (manufacturing site of over-the-counter drugs and cosmetics), reviewed production records and collected product and environmental samples for analysis. FDA's inspection found poor manufacturing practices. Analysis by pulsed-field gel electrophoresis confirmed a match between NRCFP samples and clinical isolates. Manufacturer A conducted extensive recalls, FDA issued a warning letter citing the manufacturer's inadequate manufacturing practices, and federal, state and local partners issued public communications to advise patients, pharmacies, other healthcare providers and healthcare facilities to stop using the recalled NRCFP. This investigation highlighted the importance of following appropriate manufacturing practices to minimize microbial contamination of cosmetic products, especially if intended for use in healthcare settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428903PMC
http://dx.doi.org/10.1017/S0950268822000668DOI Listing

Publication Analysis

Top Keywords

manufacturing practices
12
linked no-rinse
8
no-rinse cleansing
8
cleansing foam
8
foam product
8
department public
8
public health
8
healthcare settings
8
complex outbreak
4
outbreak linked
4

Similar Publications

Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.

View Article and Find Full Text PDF

Nanocellulose composites based on embedded europium-containing coordination polymers for the detection of antibiotics.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.

View Article and Find Full Text PDF

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Background: An increasing number of wearable medical devices are being used for personal monitoring and professional health care purposes. These mobile health devices collect a variety of biometric and health data but do not routinely connect to a patient's electronic health record (EHR) or electronic medical record (EMR) for access by a patient's health care team.

Methods: The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Committee on Mobile Health and Bioengineering in Laboratory Medicine (C-MHBLM) developed consensus recommendations for consideration when interfacing mobile health devices to an EHR/EMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!