Background: Campylobacter (C.) species are the most common bacterial cause of foodborne diarrhea in humans. Despite colonization, most animals do not show clinical signs, making recognition of affected flocks and disruption of the infection chain before slaughter challenging. Turkeys are often cocolonized with C. jejuni and C. coli. To understand the pathogen-host-interaction in the context of two different Campylobacter species, we compared the colonization patterns and quantities in mono- and co-colonized female commercial turkeys. In three repeated experiments we investigated the impact on gut morphology, functional integrity, and microbiota composition as parameters of gut health at seven, 14, and 28 days post-inoculation.

Results: Despite successful Campylobacter colonization, clinical signs or pathological lesions were not observed. C. coli persistently colonized the distal intestinal tract and at a higher load compared to C. jejuni. Both strains were isolated from livers and spleens, occurring more frequently in C. jejuni- and co-inoculated turkeys. Especially in C. jejuni-positive animals, translocation was accompanied by local heterophil infiltration, villus blunting, and shallower crypts. Increased permeability and lower electrogenic ion transport of the cecal mucosa were also observed. A lower relative abundance of Clostridia UCG-014, Lachnospiraceae, and Lactobacillaceae was noted in all inoculated groups compared to controls.

Conclusions: In sum, C. jejuni affects gut health and may interfere with productivity in turkeys. Despite a higher cecal load, the impact of C. coli on investigated parameters was less pronounced. Interestingly, gut morphology and functional integrity were also less affected in co-inoculated animals while the C. jejuni load decreased over time, suggesting C. coli may outcompete C. jejuni. Since a microbiota shift was observed in all inoculated groups, future Campylobacter intervention strategies may involve stabilization of the gut microbiota, making it more resilient to Campylobacter colonization in the first place.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347085PMC
http://dx.doi.org/10.1186/s13099-022-00508-xDOI Listing

Publication Analysis

Top Keywords

gut morphology
12
morphology functional
12
functional integrity
12
integrity microbiota
8
microbiota composition
8
campylobacter species
8
clinical signs
8
gut health
8
campylobacter colonization
8
inoculated groups
8

Similar Publications

C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway.

Immun Inflamm Dis

January 2025

Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.

View Article and Find Full Text PDF

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Background: The small intestine harbors a rich array of intestinal intraepithelial lymphocytes (IELs) that interact with structural cells to collectively sustain gut immune homeostasis. Dysregulation of gut immune homeostasis was implicated in the pathogenesis of multiple autoimmune diseases, however, whether this homeostasis is disrupted in a lupus autoimmune background remains unclear.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analyses to elucidate immune and structural milieu in the intestinal epithelium of MRL/Lpr lupus mice (Lpr mice) and MRL/Mpj control mice (Mpj mice).

View Article and Find Full Text PDF

Retinoid signaling in pancreas development, islet function, and disease.

Curr Top Dev Biol

January 2025

University of Michigan, Department of Pharmacology, Caswell Diabetes Institute, Ann Arbor, MI, United States. Electronic address:

All-trans retinoic acid (ATRA) signaling is essential in numerous different biological contexts. This review highlights the diverse roles of ATRA during development, function, and diseases of the pancreas. ATRA is essential to specify pancreatic progenitors from gut tube endoderm, endocrine and exocrine differentiation, and adult islet function.

View Article and Find Full Text PDF

To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!