A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Piecewise Multivariate Linearity Between Kinematic Features and Cumulative Strain Damage Measure (CSDM) Across Different Types of Head Impacts. | LitMetric

In a previous study, we found that the relationship between brain strain and kinematic features cannot be described by a generalized linear model across different types of head impacts. In this study, we investigate if such a linear relationship exists when partitioning head impacts using a data-driven approach. We applied the K-means clustering method to partition 3161 impacts from various sources including simulation, college football, mixed martial arts, and car crashes. We found piecewise multivariate linearity between the cumulative strain damage (CSDM; assessed at the threshold of 0.15) and head kinematic features. Compared with the linear regression models without partition and the partition according to the types of head impacts, K-means-based data-driven partition showed significantly higher CSDM regression accuracy, which suggested the presence of piecewise multivariate linearity across types of head impacts. Additionally, we compared the piecewise linearity with the partitions based on individual features used in clustering. We found that the partition with maximum angular acceleration magnitude at 4706 rad/s led to the highest piecewise linearity. This study may contribute to an improved method for the rapid prediction of CSDM in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-022-03020-0DOI Listing

Publication Analysis

Top Keywords

head impacts
20
types head
16
piecewise multivariate
12
multivariate linearity
12
kinematic features
12
cumulative strain
8
strain damage
8
piecewise linearity
8
head
6
impacts
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!