A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis. | LitMetric

A robust medical image computing infrastructure must host massive multimodal archives, perform extensive analysis pipelines, and execute scalable job management. An emerging data format standard, the Brain Imaging Data Structure (BIDS), introduces complexities for interfacing with XNAT archives. Moreover, workflow integration is combinatorically problematic when matching large amount of processing to large datasets. Historically, workflow engines have been focused on refining workflows themselves instead of actual job generation. However, such an approach is incompatible with data centric architecture that hosts heterogeneous medical image computing. Distributed automation for XNAT toolkit (DAX) provides large-scale image storage and analysis pipelines with an optimized job management tool. Herein, we describe developments for DAX that allows for integration of XNAT and BIDS standards. We also improve DAX's efficiencies of diverse containerized workflows in a high-performance computing (HPC) environment. Briefly, we integrate YAML configuration processor scripts to abstract workflow data inputs, data outputs, commands, and job attributes. Finally, we propose an online database-driven mechanism for DAX to efficiently identify the most recent updated sessions, thereby improving job building efficiency on large projects. We refer the proposed overall DAX development in this work as DAX-1 (DAX version 1). To validate the effectiveness of the new features, we verified (1) the efficiency of converting XNAT data to BIDS format and the correctness of the conversion using a collection of BIDS standard containerized neuroimaging workflows, (2) how YAML-based processor simplified configuration setup via a sequence of application pipelines, and (3) the productivity of DAX-1 on generating actual HPC processing jobs compared with earlier DAX baseline method. The empirical results show that (1) DAX-1 converting XNAT data to BIDS has similar speed as accessing XNAT data only; (2) YAML can integrate to the DAX-1 with shallow learning curve for users, and (3) DAX-1 reduced the job/assessor generation latency by finding recent modified sessions. Herein, we present approaches for efficiently integrating XNAT and modern image formats with a scalable workflow engine for the large-scale dataset access and processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712842PMC
http://dx.doi.org/10.1007/s10278-022-00679-8DOI Listing

Publication Analysis

Top Keywords

medical image
12
xnat data
12
data
9
data format
8
image computing
8
analysis pipelines
8
job management
8
converting xnat
8
data bids
8
xnat
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!