Vulvovaginal candidiasis (VVC) is a prevalent infection of the genitourinary tract affecting millions of women worldwide. In the present study, the importance of virulence factors, ERG11 gene mutations, ERG11 gene expression, and plasma membrane ergosterol content for fluconazole resistance in Candida species was investigated in 200 women suspected of vulvovaginitis. Isolated Candida species were identified using the ITS-restriction fragment length polymorphism (ITS-RFLP) technique. Antifungal susceptibility testing was performed according to the CLSI document. ERG11 gene expression was analyzed using real-time PCR. ERG11 gene mutation analysis was performed using sequencing methods, and the ergosterol content of the cell membrane was determined in fluconazole-resistant isolates. Furthermore, the production of phospholipase and proteinase enzymes was evaluated in recurrent and non-recurrent infections. VVC was diagnosed in 101 (50.5%) of the 200 clinical cases, of which 21 (20.8%) were confirmed as RVVC. Candida albicans was the most prevalent species, followed by C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, and C. guilliermondii. Ketoconazole and fluconazole were the most effective drugs against C. albicans among five tested antifungals with MIC ranges between 0.06 and 16 μg/mL and 0.25-64 μg/mL. Substitutions of A114S, Y257H, T123I and A114V were detected in fluconazole-resistant C. albicans. The ergosterol content of the fungal cell membrane and the mean levels of ERG11 gene expression transcript were higher in fluconazole-resistant C. albicans isolates obtained from RVVC than in those obtained from VVC cases. Phospholipase and proteinase were produced in different amounts in all Candida species isolated from VVC and RVVC cases. In this review, our results demonstrated that several molecular mechanisms, including ERG11 gene expression, changes in the cell membrane ergosterol content, and mutations in ERG11 gene alone or simultaneously involved in fluconazole resistance of C. albicans species and the recurrence of VVC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105696 | DOI Listing |
Curr Med Mycol
May 2024
Department of Microbiology, Sri Ramachandra Medical College & Research Institute, SRIHER, Porur, Chennai 600116, India.
Background And Purpose: is the third most commonly isolated species from candidemia patients admitted to Indian intensive care units. Outbreak of infection and emergence of fluconazole resistance associated with this particular species has been increasingly documented since 2018. Worldwide data has documented that Y132F substitution in the gene is the predominant fluconazole resistance mechanism among .
View Article and Find Full Text PDFmSphere
December 2024
Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
The widespread use of azole antifungals in agriculture and clinical settings has led to serious drug resistance. Overexpression of the azole drug target 14α-demethylase ERG11 (CYP51) is the most common fungal resistance mechanism. However, the presence of additional regulatory proteins in the transcriptional response of is not yet fully elucidated.
View Article and Find Full Text PDFFood Microbiol
April 2025
Erciyes University, Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Kayseri, Turkiye.
This study has provided characterization data (carriage of virulence, antifungal resistance, caseinase activity, biofilm-forming ability and genotyping) of Candida albicans isolates and the occurrence of Candida species in traditional cheeses collected from Kayseri, Türkiye. Phenotypic (E-test, Congo red agar and microtiter plate tests) and molecular tests (identification, virulence factors, biofilm-formation, antifungal susceptibility) were carried out. The phylogenetic relatedness of C.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
is one of the main causes of invasive candidiasis. Rapid identification of antifungal resistance is crucial for selection of an appropriate antifungal to improve patient outcomes. Mutations at specific loci are strongly correlated with resistance to antifungal agents.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2024
Dipartimento di Scienze di Laboratorio ed Ematologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy.
Accurate identification and rapid genotyping of , a significant opportunistic pathogen in healthcare settings, is crucial for managing outbreaks, timely intervention, and effective infection control measures. This study includes 24 clinical samples and 2 positive environmental surveillance swabs collected during a fluconazole-resistant outbreak at the Tuscany Rehabilitation Clinic (Clinica di Riabilitazione Toscana, CRT), located in the province of Arezzo, Italy. Fourier-transform infrared (FTIR) spectroscopy, genetic sequencing of the ERG11 gene, and short tandem repeat (STR) analysis was applied to track the fluconazole-resistant outbreak at the CRT facility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!