A User-Friendly Platform for Single-Cell Raman Spectroscopy Analysis.

Spectrochim Acta A Mol Biomol Spectrosc

Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland. Electronic address:

Published: December 2022

The optimization of Raman instruments greatly expands our understanding of single-cell Raman spectroscopy. The improvement in the speed and sensitivity of the instrument and the implementation of advanced data mining methods help to reveal the complex chemical and biological information within the Raman spectral data. Here we introduce a new Matlab Graphical User-Friendly Interface (GUI), named "CELL IMAGE" for the analysis of cellular Raman spectroscopy data. The three main steps of data analysis embedded in the GUI include spectral processing, pattern recognition and model validation. Various well-known methods are available to the user of the GUI at each step of the analysis. Herein, a new subsampling optimization method is integrated into the GUI to estimate the minimum number of spectral collection points. The introduction of the signal-to-noise ratio (SNR) of the analyte in the binomial statistical model means the new subsampling model is more sophisticated and suitable for complicated Raman cell data. These embedded methods allow "CELL IMAGE" to transform spectral information into biological information, including single-cell visualization, cell classification and biomolecular/ drug quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121686DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
single-cell raman
8
"cell image"
8
raman
6
data
5
user-friendly platform
4
platform single-cell
4
analysis
4
spectroscopy analysis
4
analysis optimization
4

Similar Publications

Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor.

Adv Sci (Weinh)

January 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.

Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.

View Article and Find Full Text PDF

Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.

View Article and Find Full Text PDF

Raman Signature of Stripe Domains in Monolayer WMoS Alloys.

ACS Appl Mater Interfaces

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.

View Article and Find Full Text PDF

Interstitial Oxygen-Driven Far-Red/Near-Infrared Emission and Efficiency Enhancement via Heterovalent Cation Substitution in CaWO Phosphors.

Inorg Chem

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Material Science and Engineering, Shandong University, Jinan 250061, P. R. China.

In this work, CaWO (CWO) phosphors were successfully synthesized using a high-temperature solid-state method, exhibiting an anomalous far-red/near-infrared (FR-NIR) emission centered at 685 nm. The origin of this FR-NIR emission is confirmed through Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and heterovalent cationic substitution (Y/Na → Ca). These analyses indicate that interstitial oxygen (O) defects within the lattice are primarily responsible for the FR-NIR emission.

View Article and Find Full Text PDF

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!