Spin pumping has been considered a powerful tool to manipulate the spin current in a ferromagnetic/nonmagnetic (FM/NM) system, where the NM part exhibits large spin-orbit coupling (SOC). In this work, the spin pumping in β-W/Interlayer (IL)/CoFeAl (CFA) heterostructures grown on Si(100 is systematically investigated with different ILs in which SOC strength ranges from weak to strong. We first measure the spin pumping through the enhancement of effective damping in CFA by varying the thickness of β-W. The damping enhancement in the bilayer of β-W/CFA (without IL) is found to be ∼50% larger than the Gilbert damping in a single CFA layer with a spin diffusion length and spin mixing conductance of 2.12 ± 0.27 nm and 13.17 ± 0.34 nm, respectively. Further, the ILs of different SOC strengths such as Al, Mg, Mo, and Ta were inserted at the β-W/CFA interface to probe their impact on damping in β-W/ILs/CFA. The effective damping reduced to 8% and 20% for Al and Mg, respectively, whereas it increased to 66% and 75% with ILs of Mo and Ta, respectively, compared to the β-W/CFA heterostructure. Thus, in the presence of ILs with weak SOC, the spin pumping at the β-W/CFA interface is suppressed, while for the high SOC ILs effective damping increased significantly from its original value of β-W/CFA bilayer using a thin IL. This is further confirmed by performing inverse spin Hall effect measurements. In summary, the transfer of spin angular momentum can be significantly enhanced by choosing a proper ultrathin interface layer. Our study provides a tool to increase the spin current production by inserting an appropriate thin interlayer which is useful in modifying the heterostructure for efficient performance in spintronics devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c09941 | DOI Listing |
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Materials Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan.
The spin pumping effect in antiferromagnets, which ultimately converts THz waves into a spin current, is the key physical mechanism leading to an essential function which harnesses the THz technology and spintronics. Here, we report thorough experimental investigations of the spin current induced by the antiferromagnetic spin pumping effect in epitaxial α-Fe_{2}O_{3} thin films having two distinct dynamic modes and unambiguously show that both the inter- and intrasublattice spin mixing conductance are equally substantial. Our experimental insight is an important advance for understanding the physics of transduction between the spin current and the staggered magnetization dynamics at THz frequency.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhusi, Allahabad 211019, India.
Pump-probe response of the spin-orbit coupled Mott insulator Sr_{2}IrO_{4} reveals a rapid creation of low-energy optical weight and suppression of three-dimensional magnetic order on laser pumping. Postpump there is a quick reduction of the optical weight but a very slow recovery of the magnetic order-the difference is attributed to weak interlayer exchange in Sr_{2}IrO_{4} delaying the recovery of three-dimensional magnetic order. We suggest that the effect has a very different and more fundamental origin.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Weizmann Institute of Science, Rehovot 7610001, Israel.
We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves, spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions describing turbulent cascades.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
Chirality-induced spin selectivity (CISS) generates giant spin polarization in transport through chiral molecules, paving the way for novel spintronic devices and enantiomer separation. Unlike conventional transport, CISS magnetoresistance (MR) violates Onsager's reciprocal relation, exhibiting significant resistance changes when reversing electrode magnetization at zero bias. However, its underlying mechanism remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!