A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Abridged validation of charm II screening tests for the detection of veterinary drug residues in fish farmed in Cameroon. | LitMetric

The intensification of aquaculture in Cameroon requires efficient screening methods to control veterinary drug residues in fish. This is why the charm II radio receptor technique for the detection of antimicrobial residues in aquaculture fish initiated in Belgium was transferred to Cameroon according to Commission Decision 2002/657/EC. The validation parameters included the following tests: repeatability, reproducibility and robustness in addition to the mandatory characteristics, detection capability and specificity. Selected veterinary drug-free fish samples of tilapia (), catfish (), carp () and kanga () were spiked at different target concentrations with different antimicrobials (β-lactams, tetracycline, sulfonamides, macrolides and chloramphenicol). The detection capabilities (CCβ) were at MRPL (0.3 µg/kg for chloramphenicol), or below the regulatory limits in a range of 0.25-0.5 MRL with 0% false-negative results. β-lactams (penicillin G), tetracyclines (tetracycline, chloretetracycline and oxytetracycline) and macrolides (erythromycine A) were detected at half MRL (25, 50 and 100 µg/kg respectively), while sulfonamides (sulfamethazine) was detected at 25 µg/kg (0.25 MRL). The detection capabilities (CCβ) obtained were satisfactory as the cut-off factors (Fm) were less than the mean values of blank fish readings (B) (Fm < B). Furthermore, the method was applicable since the cut-off factor was less than the positivity threshold (Fm < T). The variability of the data under repeatability and reproducibility conditions was acceptable, with a relative standard deviation less than 15%. Results were unaffected by delaying the reading time from 0 h to 24 h after the addition of scintillation fluid, with a precision below 16%. Likewise, non-target drugs were not detected even at high concentrations (100 MRL) in a cross-reactivity study. From the overall results, the performance characteristics (detection capabilities, precision, robustness and specificity) were suitable and comparable to the initial validation results, indicating that the transfer to Cameroon laboratory was valid, the method was reliable and could be used in aquaculture fish quality monitoring programs in Cameroon.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2022.2107710DOI Listing

Publication Analysis

Top Keywords

veterinary drug
8
drug residues
8
residues fish
8
detection capabilities
8
capabilities ccβ
8
detection
5
fish
5
abridged validation
4
validation charm
4
charm screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!